Article contents
Intersections Finies de Sous-Groupes Nets
Published online by Cambridge University Press: 20 November 2018
Extract
Dans la théorie des groupes abéliens, les diverses notions de pureté de sous-groupes jouent un rôle très important. Récemment, un ouvrage entier de A. P. Mishina et L. A. Skorniakov a été consacré à ces notions et à leurs généralisations à la théorie des modules (voir [8]). Espérant faire jouer aux sous-groupes purs d'un groupe abélien un rôle analogue à celui des idéaux primaires dans la théorie des anneaux noetheriens, L. Fuchs pose le problème de caractériser les sous-groupes d'un groupe abélien qui sont des intersections de familles finies de sous-groupes purs ([4] problème 13, p. 134). Ce problème, sans l'exigence de finitude offre beaucoup moins de difficultés. Une solution en est donnée par C. Megibben dans [7] pour les familles de sous-groupes purs et par K. M. Rangaswamy dans [9] pour les familles de sous-groupes nets.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1980
References
Bibliographie
- 2
- Cited by