Published online by Cambridge University Press: 20 November 2018
We are concerned with establishing sufficiency theorems for minima of simple integrals of the parametric type in a class of curves with variable end points and satisfying isoperimetric side conditions. The results which are obtained involve no explicit assumptions of normality. Such results can be derived by transforming our problem to a problem of Bolza and using the latest developments in the theory of that problem. More recently [6] an indirect method of proof has been published. Our object is to present a direct method of proof without transformation of the problem which is based upon a generalization of the classical theory of fields.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.