Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-05T22:02:55.027Z Has data issue: false hasContentIssue false

Logan’s problem for Jacobi transforms

Published online by Cambridge University Press:  24 April 2023

Dmitry Gorbachev*
Affiliation:
Department of Applied Mathematics and Computer Science, Tula State University, 300012 Tula, Russia e-mail: ivaleryi@mail.ru
Valerii Ivanov
Affiliation:
Department of Applied Mathematics and Computer Science, Tula State University, 300012 Tula, Russia e-mail: ivaleryi@mail.ru
Sergey Tikhonov
Affiliation:
Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain e-mail: stikhonov@crm.cat
*

Abstract

We consider direct and inverse Jacobi transforms with measures

$$\begin{align*}d\mu(t)=2^{2\rho}(\operatorname{sinh} t)^{2\alpha+1}(\operatorname{cosh} t)^{2\beta+1}\,dt\end{align*}$$
and
$$\begin{align*}d\sigma(\lambda)=(2\pi)^{-1}\Bigl|\frac{2^{\rho-i\lambda}\Gamma(\alpha+1)\Gamma(i\lambda)} {\Gamma((\rho+i\lambda)/2)\Gamma((\rho+i\lambda)/2-\beta)}\Bigr|^{-2}\,d\lambda,\end{align*}$$
respectively. We solve the following generalized Logan problem: to find the infimum
$$\begin{align*}\inf\Lambda((-1)^{m-1}f), \quad m\in \mathbb{N}, \end{align*}$$
where $\Lambda (f)=\sup \,\{\lambda>0\colon f(\lambda )>0\}$ and the infimum is taken over all nontrivial even entire functions f of exponential type that are Jacobi transforms of positive measures with supports on an interval. Here, if $m\ge 2$, then we additionally assume that $\int _{0}^{\infty }\lambda ^{2k}f(\lambda )\,d\sigma (\lambda )=0$ for $k=0,\dots ,m-2$.

We prove that admissible functions for this problem are positive-definite with respect to the inverse Jacobi transform. The solution of Logan’s problem was known only when $\alpha =\beta =-1/2$. We find a unique (up to multiplication by a positive constant) extremizer $f_m$. The corresponding Logan problem for the Fourier transform on the hyperboloid $\mathbb {H}^{d}$ is also solved. Using the properties of the extremizer $f_m$ allows us to give an upper estimate of the length of a minimal interval containing not less than n zeros of positive definite functions. Finally, we show that the Jacobi functions form the Chebyshev systems.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The work of the first and second authors was supported by the RSF grant 18-11-00199 (https://rscf.ru/project/18-11-00199/). The work of the third author was partially supported by grants PID2020-114948GB-I00, 2021 SGR 00087, and AP09260223 by the CERCA Programme of the Generalitat de Catalunya and by the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M).

References

Achieser, N. N., Theory of approximation, Dover, New York, 2004.Google Scholar
Bérard, P. and Helffer, B., Sturm’s theorem on zeros of linear combinations of eigenfunctions . Expo. Math. 38(2020), no. 1, 2750.CrossRefGoogle Scholar
Berdysheva, E. E., Two related extremal problems for entire functions of several variables . Math. Notes 66(1999), no. 3, 271282.CrossRefGoogle Scholar
Carneiro, E., Milinovich, M. B., and Soundararajan, K., Fourier optimization and prime gaps . Comment. Math. Helv. 94(2019), 533568.CrossRefGoogle Scholar
Cohn, H. and de Courcy-Ireland, M., The Gaussian core model in high dimensions . Duke Math. J. 167(2018), no. 13, 24172455.CrossRefGoogle Scholar
Cohn, H. and Gonçalves, F., An optimal uncertainty principle in twelve dimensions via modular forms . Invent. Math. 217(2019), 799831.10.1007/s00222-019-00875-4CrossRefGoogle Scholar
Cohn, H. and Zhao, Y., Sphere packing bounds via spherical codes . Duke Math. J. 163(2014), no. 10, 19652002.10.1215/00127094-2738857CrossRefGoogle Scholar
Edwards, R. E., Fourier series: A modern introduction, Vol. 1, Springer, New York, 1979.10.1007/978-1-4612-6208-4CrossRefGoogle Scholar
Flensted-Jensen, M. and Koornwinder, T. H., The convolution structure for Jacobi function expansions. Ark. Mat. 11(1973), 245262.CrossRefGoogle Scholar
Flensted-Jensen, M. and Koornwinder, T. H., Jacobi functions: The addition formula and the positivity of dual convolution structure. Ark. Mat. 17(1979), 139151.10.1007/BF02385463CrossRefGoogle Scholar
Gonçalves, F., Oliveira e Silva, D., and Ramos, J. P. G., On regularity and mass concentration phenomena for the sign uncertainty principle. J. Geom. Anal. 31(2021), 60806101.10.1007/s12220-020-00519-7CrossRefGoogle Scholar
Gonçalves, F., Oliveira e Silva, D., and Steinerberger, S., Hermite polynomials, linear flows on the torus, and an uncertainty principle for roots. J. Math. Anal. Appl. 451 (2017), no. 2, 678711.CrossRefGoogle Scholar
Gorbachev, D., Ivanov, V., and Tikhonov, S., Uncertainty principles for eventually constant sign bandlimited functions. SIAM J. Math. Anal. 52(2020), no. 5, 47514782.CrossRefGoogle Scholar
Gorbachev, D. V. and Ivanov, V. I., Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm–Liouville problem, which are exact for entire functions of exponential type. Sb. Math. 206(2015), no. 8, 10871122.CrossRefGoogle Scholar
Gorbachev, D. V. and Ivanov, V. I., Turán, Fejér and Bohman extremal problems for multidimensional Fourier transform over eigenfunctions of a Sturm–Liouville problem . Sb. Math. 210(2019), no. 6, 5681.CrossRefGoogle Scholar
Gorbachev, D. V., Ivanov, V. I., and Smirnov, O. I., Some extremal problems for the Fourier transform on the hyperboloid . Math. Notes 102(2017), no. 4, 480491.CrossRefGoogle Scholar
Kolountzakis, M. N., On a problem of Turán about positive definite functions . Proc. Amer. Math. Soc. 131(2003), 34233430.10.1090/S0002-9939-03-07023-0CrossRefGoogle Scholar
Koornwinder, T., A new proof of a Paley–Wiener type theorem for the Jacobi transform . Ark. Mat. 13(1975), 145159.CrossRefGoogle Scholar
Koornwinder, T. H., Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey, R. A., Koornwinder, T. H., and Schempp, W. (eds.), Special functions: Group theoretical aspects and applications, Reidel, Dordrecht, 1984, pp. 185.Google Scholar
Levin, B. Y., Distribution of zeros of entire functions, American Mathematical Society, Providence, RI, 1980.Google Scholar
Levitan, B. M. and Sargsyan, I. S., Sturm–Liouville and Dirac operators, Nauka, Moscow, 1988 (In Russian).Google Scholar
Logan, B. F., Extremal problems for positive-definite bandlimited functions. I. Eventually positive functions with zero integral . SIAM J. Math. Anal. 14(1983), no. 2, 249252.CrossRefGoogle Scholar
Logan, B. F., Extremal problems for positive-definite bandlimited functions. II. Eventually negative functions . SIAM J. Math. Anal. 14(1983), no. 2, 253257.CrossRefGoogle Scholar
Logan, B. F., Extremal problems for positive-definite bandlimited functions. III. The maximum number of zeros in an interval $\left[0,T\right]$ . SIAM J. Math. Anal. 14 (1983), no. 2, 258268.CrossRefGoogle Scholar
Strichartz, R. S., Harmonic analysis on hyperboloids . J. Funct. Anal. 12(1973), 341383.10.1016/0022-1236(73)90001-3CrossRefGoogle Scholar
Vaaler, J. D., Some extremal functions in Fourier analysis . Bull. Amer. Math. Soc. (N.S.) 12(1985), no. 2, 183216.CrossRefGoogle Scholar
Vilenkin, N. J., Special functions and the theory of group representations, Translations of Mathematical Monographs, 22, American Mathematical Society, Providence, RI, 1978.Google Scholar