Published online by Cambridge University Press: 20 November 2018
We throw some light on the question: is there a MAD family (a maximal family of infinite subsets of $\mathbb{N}$, the intersection of any two is finite) that is saturated (=completely separable i.e., any
$X\,\subseteq \,\mathbb{N}$ is included in a finite union of members of the family or includes a member (and even continuum many members) of the family). We prove that it is hard to prove the consistency of the negation:
(i) if ${{2}^{{{\aleph }_{0}}}}\,<\,{{\aleph }_{\omega }}$, then there is such a family;
(ii) if there is no such family, then some situation related to pcf holds whose consistency is large (and if ${{a}_{*}}\,>\,{{\aleph }_{1}}$ even unknown);
(iii) if, e.g., there is no inner model with measurables, then there is such a family.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.