Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T14:12:16.888Z Has data issue: false hasContentIssue false

Metaplectic Tensor Products for Automorphic Representation of (r)

Published online by Cambridge University Press:  20 November 2018

Shuichiro Takeda*
Affiliation:
Mathematics Department, University of Missouri Columbia, Columbia, MO, 65211, USA e-mail: takedas@missouri.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $M\,=\,\text{G}{{\text{L}}_{{{r}_{1}}}}\,\times \,\cdots \,\times \,\text{G}{{\text{L}}_{{{r}_{k}}}}\,\subseteq \,\text{G}{{\text{L}}_{r}}$ be a Levi subgroup of $\text{G}{{\text{L}}_{r}}$, where $r\,=\,{{r}_{1}}+\cdots +{{r}_{k}}$, and $\widetilde{M}$ its metaplectic preimage in the $n$-fold metaplectic cover $\widetilde{\text{G}{{\text{L}}_{r}}}$ of $\text{G}{{\text{L}}_{r}}$. For automorphic representations ${{\pi }_{1}},\ldots ,{{\pi }_{k}}$ of ${{\widetilde{\text{GL}}}_{{{r}_{1}}}}\left( \mathbb{A} \right),\ldots ,{{\widetilde{\text{GL}}}_{{{r}_{k}}}}\left( \mathbb{A} \right)$, we construct (under a certain technical assumption that is always satisfied when $n\,=\,2$) an automorphic representation $\pi $ of $\widetilde{M}\left( \mathbb{A} \right)$ that can be considered as the “tensor product” of the representations ${{\pi }_{1}},\ldots ,{{\pi }_{k}}$. This is the global analogue of the metaplectic tensor product defined by P. Mezo in the sense that locally at each place $v,\,{{\pi }_{v}}$ is equivalent to the local metaplectic tensor product of ${{\text{ }\!\!\pi\!\!\text{ }}_{1,\,v}},\ldots ,{{\text{ }\!\!\pi\!\!\text{ }}_{k,\,v}}$ defined by Mezo. Then we show that if all of the ${{\text{ }\!\!\pi\!\!\text{ }}_{i}}$ are cuspidal (resp. square-integrable modulo center), then the metaplectic tensor product is cuspidal (resp. square-integrable modulo center). We also show that (both locally and globally) the metaplectic tensor product behaves in the expected way under the action of a Weyl group element and show the compatibility with parabolic inductions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[AT] Artin, E. and Tate, J., Class field theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968.Google Scholar
[B] Banks, W. D., Twisted symmetric-square L-functions and the nonexistence of Siegel zeros on GL(3). Duke Math. J. 87(1997), no. 2, 343353.http://dx.doi.org/10.1215/S0012-7094-97-08713-5 Google Scholar
[BBL] Banks, W., Bump, D., and Lieman, D., Whittaker-Fourier coefficients of metaplectic Eisenstein series. Compositio Math. 135(2003), no. 2, 153178.http://dx.doi.org/10.1023/A:1021763918640 Google Scholar
[BLS] Banks, W. D., Levy, J., and Sepanski, M., Block-compatible metaplectic cocycles. J. Reine Angew. Math. 507(1999), 131163.http://dx.doi.org/10.1515/crll.1999.507.131 Google Scholar
[Bo] Bourbaki, N., Integration. II. Chapters 7–9, translated from the 1963 and 1969 French originals by Sterling K. Berberian, Elements of Mathematics, Springer-Verlag, Berlin, 2004.Google Scholar
[BFH] Bump, D., Friedberg, S., and Hoffstein, J., p-adic Whittaker functions on the metaplectic group. Duke Math. J. 63(1991), no. 2, 379397. http://dx.doi.org/10.1215/S0012-7094-91-06316-7 Google Scholar
[BG] Bump, D. and Ginzburg, D., Symmetric square L-functions on GL(r). Ann. of Math. 136(1992), no. 1, 137205.http://dx.doi.org/10.2307/2946548 Google Scholar
[BH] Bump, D. and Hoffstein, J., On Shimura's correspondence. Duke Math. J. 55(1987), no. 3,661691.http://dx.doi.org/10.1215/S0012-7094-87-05533-5 Google Scholar
[C] Cogdell, J. W., Lectures on L-functions, converse theorems, and functoriality of GL(n). In: Lectures on automorphic L-functions, Fields Institute Monographs, 20, American Mathematical Society, Providence, RI, 2004, pp. 196.Google Scholar
[D-E] Deitmar, A. and Echterhoff, S., Principles of harmonic analysis. Universitext, Springer, New York,2009.Google Scholar
[F] Flicker, Y. Z., Automorphic forms on covering groups of GL(2). Invent. Math. 57(1980), no. 2,119182.http://dx.doi.org/10.1007/BF01390092 Google Scholar
[FK] Flicker, Y. Z. and Kazhdan, D. A., Metaplectic correspondence. Inst. Hautes Études Sci. Publ. Math. 64(1986), 53110.Google Scholar
[GO] Chinta, G. and Offen, O., A metaplectic Casselman-Shalika formula for GLr. Amer. J. Math. 135(2013), no. 2, 403441.http://dx.doi.org/10.1353/ajm.2013.0013 Google Scholar
[K1] Kable, A. C., Exceptional representations of the metaplectic double cover of the general linear group. PH.D thesis, Oklahoma State University, 1997.Google Scholar
[K2] Kable, A. C., The tensor product of exceptional representations on the general linear group. Ann. Sci. École Norm. Sup. (4) 34(2001), no. 5, 741769.http://dx.doi.org/10.1016/S0012-9593(01)01075-8 Google Scholar
[KP] Kazhdan, D. A. and Patterson, S. J., Metaplectic forms. Inst. Hautes Études Sci. Publ. Math. 59(1984), 35142.Google Scholar
[Kub] Kubota, T., On automorphic functions and the reciprocity law in a number field. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 2, Kinokuniya Book-Store Co., Ltd., Tokyo, 1969.Google Scholar
[Mat] Matsumoto, H., Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. 2(1969), 162.Google Scholar
[Me] Mezo, P., Metaplectic tensor products for irreducible representations. Pacific J. Math. 215(2004), no. 1, 8596.http://dx.doi.org/10.2140/pjm.2004.215.85 Google Scholar
[MW] Moeglin, C. and Waldspurger, J.-L., Spectral decomposition and Eisenstein series. Cambridge Tracts in Mathematics, 113, Cambridge University Press, Cambridge, 1995.http://dx.doi.org/10.1017/CBO9780511470905 Google Scholar
[S] Suzuki, T., Metaplectic Eisenstein series and the Bump-Hoffstein conjecture. Duke Math. J. 90(1997), no. 3, 577630. http://dx.doi.org/10.1215/S0012-7094-97-09016-5 Google Scholar
[T1] Takeda, S., The twisted symmetric square L-function of GL(r). Duke Math. J. 163(2014), no. 1,175266. http://dx.doi.org/10.1215/00127094-2405497 Google Scholar
[T2] Takeda, S., On a certain metaplectic Eisenstein series and the twisted symmetric square L-function. Math. Z. 281(2015), no. 1–2, 103157.http://dx.doi.org/10.1007/s00209-015-1476-x Google Scholar