Published online by Cambridge University Press: 20 November 2018
In a previous paper (1) the notion of the α-width ∈A(α) of a (0, 1)-matrix A was introduced, and a formula for the minimal α-width taken over the class
of all (0, 1)-matrices having the same row and column sums as A, was obtained. The main tool in arriving at this formula was a block decomposition theorem (1, Theorem 2.1; repeated below as Theorem 2.1) that established the existence, in the class
generated by A, of certain matrices having a simple block structure. The block decomposition theorem does not itself directly involve the notion of minimal α-width, but rather centres around a related class concept, that of multiplicity. We review both of these notions in § 2, together with some other pertinent definitions and results.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.