No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
The classical uniqueness theorems of Riesz and Koebe show an important characteristic of boundary behavior of analytic functions in the unit disc. The purpose of this note is to discuss these uniqueness theorems on hyperbolic Riemann surfaces. It will be necessary to give additional hypotheses because Riemann surfaces can be very nasty. So, in this note the Wiener compactification will be used as ideal boundary of Riemann surfaces. The Theorem, Corollaries 1, 2 and 3 are of Riesz type, Riesz-Nevanlinna type, Koebe type and Koebe-Nevanlinna type respectively. Corollaries 4 and 5 are general forms of Corollaries 2 and 3 respectively.
Let f be a mapping from an open Riemann surface R into a Riemann surface R′.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.