Article contents
Some Remarks on Semigroup Presentations
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let a semigroup A be given by generators a1, a2, … , ad and defining relations u1 = v1, u2 = v2, … , ue = ve between these generators, the ui, vi being words in the generators. We then have a presentation of A, and write
The same generators with the same relations can also be interpreted as the presentation of a group, for which we write
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1967
References
1.
Coxeter, H. S. M. and Moser, W. O. J., Generators and relations for discrete groups,
Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F. 14 (1st ed., Berlin-Göttingen-Heidelberg, 1957; 2nd éd., Berlin-Göttingen-Heidelberg-New York, 1965).Google Scholar
2.
Mennicke, Jens, Einige endliche Gruppen mit drei Erzeugenden und drei Relationen, Arch. Math.,
10 (1959), 409–418.Google Scholar
3.
Neumann, B. H., Adjunction of elements to groups, J. London Math. Soc.,
18 (1943), 4–11.Google Scholar
4.
Neumann, B. H., An essay on free products of groups with amalgamations,
Philos. Trans. Roy. Soc. London, A, 246 (1954), 503–554.Google Scholar
5.
Neumann, B. H., On some finite groups with trivial multiplicator, Publ. Math. Debrecen,
4 (1956), 190–194.Google Scholar
6.
Neumann, B. H., Embedding theorems for semigroups, J. London Math. Soc.,
35 (1960), 184–192.Google Scholar
7.
Todd, J. A. and Coxeter, H. S. M., A practical method for enumerating cosets of a finite abstract group, Proc. Edinburgh Math. Soc. (2),
5 (1936), 26–34.Google Scholar