Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T09:11:35.242Z Has data issue: false hasContentIssue false

Absent p53 Immunohistochemical Staining in a Pituitary Carcinoma

Published online by Cambridge University Press:  24 February 2017

Krishna Kumar*
Affiliation:
Department of Surgery, Section of Neurosurgery, Regina General Hospital, University of Saskatchewan, Regina, Saskatchewan
Robert J.B. Macaulay
Affiliation:
Department of Pathology and Laboratory medicine, Queen Elizabeth II Health Science Centre, Dalhousie University, Halifax, Nova Scotia, Canada
Michael Kelly
Affiliation:
Department of Pathology and Laboratory medicine, Queen Elizabeth II Health Science Centre, Dalhousie University, Halifax, Nova Scotia, Canada
Tyler Pirlot
Affiliation:
Department of Pathology and Laboratory medicine, Queen Elizabeth II Health Science Centre, Dalhousie University, Halifax, Nova Scotia, Canada
*
Suite 121, Medical Office Building, Regina General Hospital, 1440 14th Avenue, Regina, Saskatchewan, Canada, S4P 0W5
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Carcinomatous transformation of pituitary adenomas is uncommon, and is generally accompanied by nuclear accumulation of p53 protein. Pituitary carcinoma lacking accumulation of p53 protein is very rare, only two such cases being previously reported.

Methods:

A patient presented with visual disturbance and cranial nerve palsies and was found to have a suprasellar mass. He underwent both transphenoidal and transfrontal excision of a nonfunctioning pituitary adenoma which recurred several times. The third recurrence was accompanied by multiple dural-based metastases. Despite aggressive surgical management, he continued to develop additional intracranial lesions and died two years after the discovery of metastatic disease. Specimens from 1984, 1995, 1997 and 1998 were available for histological and immunocytochemical analysis. Antibodies recognizing the pituitary hormones (ACTH, PRL, GH, FSH, LH and TSH), as well as cytokeratin, epithelial membrane antigen (EMA), glial fibrillary acidic protein (GFAP) and chromogranin A were applied to investigate the lineage of the neoplasm. Antisera specific for Ki-67 (MIB-1) and p53 protein were also applied to further delineate the biology of the tumour.

Results:

Although cytokeratin and chromogranin A were detected in neoplastic cells, no expression of pituitary hormones was demonstrable, indicative of a nonfunctioning, null-cell pituitary adenoma. Nuclear pleomorphism and mitotic activity increased with subsequent resections. Abnormal accumulation of p53 protein was not observed, neither in early resections nor in the metastatic deposits.

Conclusions:

Failure to demonstrate p53 protein accumulation does not ensure a favourable outcome for pituitary adenoma. Accordingly, pituitary carcinoma may occur in the absence of p53 accumulation. The factors which underlie aggressive behaviour of pituitary neoplasms are uncertain but are under investigation.

Résumé:

RÉSUMÉ:Introduction:

La transformation carcinomateuse d'un adénome pituitaire est rare et elle est généralement accompagnée par une accumulation nucléaire de la protéine p53. Le carcinome pituitaire sans accumulation de protéine p53 est très rare, seulement deux cas ayant été rapportés à date.

Méthodes:

On a découvert une masse suprasellaire chez un patient ayant consulté pour des troubles visuels accompagnés d'anomalies des nerfs crâniens. Il a subi une excision par voie transphénoïdale et par voie transfrontale d'un adénome pituitaire non fonctionnel qui a récidivé à plusieurs reprises. La troisième récidive s'est accompagnée de métastases durales multiples. Il a continué à développer des lésions intracrâniennes additionnelles malgré un traitement chirurgical agressif. Le patient est décédé deux ans après la découverte des premières métastases. Des spécimens anatomopathologiques de 1984, 1995, 1997 et 1998 étaient disponibles pour analyse histologique et immunocytochimique. Des anticorps reconnaissant les hormones pituitaires (ACTH, PRL, GH, FSH, LH et TSH), ainsi que la cytokératine, l'antigène de la membrane épithéliale (EMA), la protéine gliofibrillaire acide (GFAP) et la chromogranine A ont été appliqués pour déterminer l'origine du cancer. Un antisérum spécifique pour le Ki-67 (MIB-1) et la protéine p53 ont également été appliqués pour mieux définir la biologie de la tumeur.

Résultats:

Bien qu'on ait détecté de la cytokératine et de la chromogranine A dans les cellules néoplasiques, aucune expression d'hormones pituitaires n'a été observée, ce qui indique qu'il s'agissait d'un adénome pituitaire non fonctionnel à cellules nulles. Le pléomorphisme nucléaire et l'activité mitotique ont augmenté d'une résection à l'autre. Une accumulation anormale de la protéine p53 n'a pas été observée, que ce soit dans les premières résections ou dans le tissu métastatique.

Conclusions:

Le fait de ne pas observer d'accumulation de la protéine p53 ne garantit pas un bon pronostic chez les cas d'adénomes pituitaires. Il peut s'agir d'un carcinome pituitaire, même s'il n'y a pas d'accumulation de la protéine p53. Les facteurs sous-jacents au comportement agressif des néoplasies pituitaires sont mal connus et demeurent à l'étude.

Type
Case Report
Copyright
Copyright © The Canadian Journal of Neurological 2000

References

REFERENCES

1. Hosoi, E, Yokogoshi, Y, Hosoi, E, et al. A pituitary specific point mutation of codon 201 of the Gs alpha gene in a pituitary adenoma of a patient with multiple endocrine neoplasia (MEN) type 1. Endocrinol Jpn 1992; 39: 319324.CrossRefGoogle Scholar
2. Daniely, M, Aviram, A, Adams, EF, et al. Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab 1998; 83: 18011805.Google Scholar
3. Spengler, D, Villalba, M, Hoffmann, A, et al. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J 1997; 16: 28142825.Google Scholar
4. Takino, H, Herman, V, Weiss, M, Melmed, S. Purine-binding factor (nm23) gene expression in pituitary tumors: marker of adenoma invasiveness. J Clin Endocrinol Metab 1995; 80: 17331738.Google Scholar
5. Pernicone, PJ, Scheithauer, BW, Sebo, TJ, et al. Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer 1997; 79: 804812.Google Scholar
6. Thapar, K, Kovacs, K, Scheithauer, BW, et al. Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 1996; 38: 99106, discussion 106–107.Google Scholar
7. Buckley, N, Bates, AS, Broome, JC, et al. p53 Protein accumulates in Cushings adenomas and invasive nonfunctional adenomas. J Clin Endocrinol Metab 1995; 80: 692696.CrossRefGoogle Scholar
8. Thapar, K, Scheithauer, BW, Kovacs, K, et al. p53 Expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumour growth fractions. Neurosurgery 1996; 38: 763770; discussion 770–771.CrossRefGoogle ScholarPubMed
9. Marks, JR, Davidoff, AM, Kerns, BJ, et al. Overexpression and mutation of p53 in epithelial ovarian cancer. Cancer Res 1991; 51: 29792984.Google Scholar
10. Levine, AJ, Momand, J, Finlay, CA. The p53 tumour suppressor gene. Nature 1991; 351: 453456.Google Scholar
11. Cohen, JJ, Duke, RC, Fadok, VA, Sellins, KS. Apoptosis and programmed cell death in immunity. Annu Rev Immunol 1992; 10: 267293.Google Scholar
12. Kuerbitz, SJ, Plunkett, BS, Walsh, WV, Kastan, MB. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 1992; 89: 74917495.CrossRefGoogle ScholarPubMed
13. Yonish, RE, Resnitzky, D, Lotem, J, et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991; 352: 345347.Google Scholar
14. Miyashita, T, Reed, JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293299.Google Scholar
15. Levy, A, Hall, L, Yeudall, WA, Lightman, SL. p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol (Oxf) 1994; 41: 809814.Google Scholar
16. Nagasaka, T, Nakashima, N, Furui, A, et al. Sarcomatous transformation of pituitary adenoma after bromocriptine therapy. Hum Pathol 1998; 29: 190193.CrossRefGoogle ScholarPubMed
17. Scheithauer, BW, Kovacs, KT, Lawser, ER, Randall, RV. Pathology of invasive pituitary tumors with special reference to functional classification. J Neurosurg 1986; 65: 733744.Google Scholar
18. Asa, SL. Tumors of the pituitary gland. In: Rosai, J, ed. Atlas of Tumor Pathology, Fascicle XXII. Series 3. Washington DC: Armed Forces Institute of Pathology. 1998; 7686.Google Scholar