Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T06:56:57.808Z Has data issue: false hasContentIssue false

Blood Glucose Control Among Critically Ill Patients with Brain Injury

Published online by Cambridge University Press:  02 December 2014

Michael J. Jacka
Affiliation:
Department of Anaesthesiology and Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada Division of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
Clinton J. Torok-Both
Affiliation:
Department of Anaesthesiology and Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada Division of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
Sean M. Bagshaw*
Affiliation:
Division of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
*
Division of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, 3C1.12 Walter C. Mackenzie Centre, 8440-112 Street, Edmonton, Alberta, T6G 2B7, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

To evaluate the incidence of hypoglycemia, hyperglycemia and blood glucose (BG) variability in brain-injured patients and their association with clinical outcomes.

Methods:

Retrospective cohort study of brain-injured patients admitted to an 11- bed neurosciences intensive care unit (ICU) from January 1 to December 31, 2003.

Results:

We included 606 patients. Mean age was 52.3 years, 60.6% were male, 11.9% had diabetes mellitus, and 64% were post-operative. Seventy-five (12.4%) received intensive insulin therapy (IIT) for a median (IQR) 72 (24-154) hours. Hypoglycemia and hyperglycemia occurred in 4.6% (96.4% receiving IIT) and 9.6% (77.6% receiving IIT). Median number of episodes per patient was 3 (75% with ≥2) and 4 (81% with ≥2) for hypoglycemia and hyperglycemia. Variable glycemic control occurred in 3.8% (100% receiving IIT) with median number of 13 episodes per patient. In-hospital mortality was 16.7%, median (IQR) ICU and hospital lengths of stay were 2 (1-5) and 8 (3-19) days. Hypoglycemia, hyperglycemia and BG variability showed non-significant but consistent associations with hospital mortality and prolonged lengths of ICU and hospital stay. The rate of recurrence of episodes showed stronger and significant associations with outcome, in particular for BG variability and hyperglycemia.

Conclusions:

Hypoglycemia, hyperglycemia and BG variability are relatively common in brain-injured patients and are associated with IIT. An increased frequency of episodes, in particular for BG variability and hyperglycemia, was associated with greater risk of both hospital death and prolonged duration of stay.

Résumé:

RÉSUMÉ:Objectif :

Le but de l’étude était d’évaluer l’incidence de l’hypoglycémie, de l’hyperglycémie et de la variabilité du glucose sanguin (GS) chez les patients atteints d’un traumatisme cérébral ainsi que la relation à l’issue clinique.

Méthodes :

Il s’agit d’une étude rétrospective sur une cohorte de patients atteints d’un traumatisme cérébral admis à une unité de soins intensifs neurologiques (USI) de 11 lits entre le 1er janvier et le 31 décembre 2003.

Résultats :

Six cent six patients, dont l’âge moyen était de 52,3 ans, ont été inclus dans l’étude. De plus, 60,6% étaient des hommes, 11,9% étaient diabétiques et 64% avaient subi une chirurgie. Soixante-quinze patients (12,4%) ont reçu une insulinothérapie intensive (ITI) dont la durée médiane était de 72 heures (écart interquartile de 24 à 154 heures). De l’hypoglycémie a été observée chez 4,6% (96,4% recevaient une ITI) et de l’hyperglycémie chez 9,6% (77,6% recevaient une ITI). Le nombre médian d’épisodes d’hypoglycémie par patient était de 3 (75% ont eu ≥ 2 épisodes) et le nombre median d’épisodes d’hyperglycémie par patient était de 4 (81% ont eu ≥ 2 épisodes). Une maîtrise variable du GS a été observée chez 3,8% (100% sous ITI) et le nombre médian d’épisodes par patient était de 13. La mortalité hospitalière était de 16,7%, la durée de séjour médiane à l’USI de 2 jours (écart interquartile de 1 à 5 jours) et la durée d’hospitalisation de 8 jours (écart interquartile de 3 à 19 jours). L’hypoglycémie, l’hyperglycémie et la variabilité du GS étaient associées de façon constante mais non significative à la mortalité hospitalière et à une durée prolongée du séjour à l’USI et du séjour à l’hôpital. L’association entre le taux de récidive des épisodes et l’issue était plus marquée et significative, particulièrement en ce qui concerne la variabilité du GS et l’hyperglycémie.

Conclusions :

L’hypoglycémie, l’hyperglycémie et la variabilité du GS sont relativement fréquentes chez les patients atteints d’un traumatisme cerebral et sont associées à l’ITI. Une fréquence accrue d’épisodes, en ce qui concerne surtout la variabilité du GS et l’hyperglycémie, était associée à un risqué plus élevé de mortalité hospitalière et d’un séjour hospitalier prolongé.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2009

References

1. van den Berghe, G, Wilmer, A, Hermans, G, Meersseman, W, Wouters, PJ, Milants, I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):44961.CrossRefGoogle ScholarPubMed
2. Mitchell, I, Knight, E, Gissane, J, Tamhane, R, Kolli, R, Leditschke, IA, et al. A phase II randomised controlled trial of intensive insulin therapy in general intensive care patients. Crit Care Resusc. 2006;8(4):28993.Google Scholar
3. Thomas, G, Rojas, MC, Epstein, SK, Balk, EM, Liangos, O, Jaber, BL. Insulin therapy and acute kidney injury in critically ill patients a systematic review. Nephrol Dial Transplant. 2007;22(10): 284955.CrossRefGoogle ScholarPubMed
4. van den Berghe, G, Wouters, P, Weekers, F, Verwaest, C, Bruyninckx, F, Schetz, M, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345(19):135967.CrossRefGoogle ScholarPubMed
5. Finney, SJ, Zekveld, C, Elia, A, Evans, TW. Glucose control and mortality in critically ill patients. JAMA. 2003;290(15):20417.Google Scholar
6. Dellinger, RP, Levy, MM, Carlet, JM, Bion, J, Parker, MM, Jaeschke, R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36(1):296327.Google Scholar
7. Krinsley, JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc. 2003;78(12):14718.Google Scholar
8. NICE-SUGAR Investigators. Intensive versus conventional glucose control in critically ill patients. New Engl J Med. 2009;360(13):128397.Google Scholar
9. Malmberg, K, Ryden, L, Efendic, S, Herlitz, J, Nicol, P, Waldenstrom, A, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardiol. 1995;26(1):5765.Google Scholar
10. Gandhi, GY, Nuttall, GA, Abel, MD, Mullany, CJ, Schaff, HV, O’Brien, PC, et al. Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial. Ann Intern Med. 2007;146(4):23343.Google Scholar
11. Bilotta, F, Caramia, R, Cernak, I, Paoloni, FP, Doronzio, A, Cuzzone, V, et al. Intensive insulin therapy after severe traumatic brain injury: a randomized clinical trial. Neurocrit Care. 2008;9(2):15966.Google Scholar
12. Bilotta, F, Spinelli, A, Giovannini, F, Doronzio, A, Delfini, R, Rosa, G. The effect of intensive insulin therapy on infection rate, vasospasm, neurologic outcome, and mortality in neurointensive care unit after intracranial aneurysm clipping in patients with acute subarachnoid hemorrhage: a randomized prospective pilot trial. J Neurosurg Anesthesiol. 2007;19(3):15660.CrossRefGoogle Scholar
13. Oddo, M, Schmidt, JM, Carrera, E, Badjatia, N, Connolly, ES, Presciutti, M, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36(12):32338.CrossRefGoogle ScholarPubMed
14. Oddo, M, Schmidt, JM, Mayer, SA, Chiolero, RL. Glucose control after severe brain injury. Curr Opin Clin Nutr Metab Care. 2008; 11(2):1349 Google Scholar
15. Schlenk, F, Graetz, D, Nagel, A, Schmidt, M, Sarrafzadeh, AS. Insulinrelated decrease in cerebral glucose despite normoglycemia in aneurysmal subarachnoid hemorrhage. Crit Care. 2008;12(1):R9.Google Scholar
16. Schlenk, F, Sarrafzadeh, AS. Is continuous insulin treatment safe in aneurysmal subarachnoid hemorrhage? Vasc Health Risk Manag. 2008;4(4):88591.Google Scholar
17. Bagshaw, SM, Egi, M, George, C, Bellomo, R. Early blood glucose control and mortality in critically ill patients in Australia. Crit Care Med. 2009;37(2):46370 CrossRefGoogle ScholarPubMed
18. Krinsley, JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36(11): 300813.Google Scholar
19. Ali, NA, O’Brien, JM Jr., Dungan, K, Phillips, G, Marsh, CB, Lemeshow, S, et al. Glucose variability and mortality in patients with sepsis. Crit Care Med. 2008;36(8):231621.CrossRefGoogle ScholarPubMed
20. Hirshberg, E, Larsen, G, Van Duker, H. Alterations in glucose homeostasis in the pediatric intensive care unit: hyperglycemia and glucose variability are associated with increased mortality and morbidity. Pediatr Crit Care Med. 2008;9(4):3616.Google Scholar
21. Dossett, LA, Cao, H, Mowery, NT, Dortch, MJ, Morris, JM Jr., May, AK. Blood glucose variability is associated with mortality in the surgical intensive care unit. Am Surg. 2008;74(8):67985; discussion 85.Google Scholar
22. Krinsley, JS, Preiser, JC. Moving beyond tight glucose control to safe effective glucose control. Crit Care. 2008;12(3):149.Google Scholar
23. Arabi, YM, Dabbagh, OC, Tamim, HM, Al-Shimemeri, AA, Memish, ZA, Haddad, SH, et al. Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med. 2008;36(12):31907.Google Scholar
24. Brunkhorst, FM, Engel, C, Bloos, F, Meier-Hellmann, A, Ragaller, M, Weiler, N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):12539.CrossRefGoogle ScholarPubMed
25. Wiener, RS, Wiener, DC, Larson, RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;300(8):93344.Google Scholar
26. Krinsley, JS, Grover, A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med. 2007;35 (10):22627.CrossRefGoogle ScholarPubMed
27. Preiser, JC, Devos, P. Clinical experience with tight glucose control by intensive insulin therapy. Crit Care Med. 2007;35 Suppl 9: S5037.Google Scholar
28. Preiser, JC, Brunkhorst, F. Tight glucose control and hypoglycemia. Crit Care Med. 2008;36(4):1391; author reply -2.Google Scholar
29. Vriesendorp, TM, DeVries, JH, van Santen, S, Moeniralam, HS, de Jonge, E, Roos, YB, et al. Evaluation of short-term consequences of hypoglycemia in an intensive care unit. Crit Care Med. 2006;34(11):27148.CrossRefGoogle Scholar
30. Andersen, SK, Gjedsted, J, Christiansen, C, Tonnesen, E. The roles of insulin and hyperglycemia in sepsis pathogenesis. J Leukoc Biol. 2004;75(3):41321.Google Scholar
31. Marik, PE, Raghavan, M. Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med. 2004;30(5):74856.Google Scholar
32. Roberts, I, Yates, D, Sandercock, P, Farrell, B, Wasserberg, J, Lomas, G, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet. 2004;364(9442):13218.Google Scholar
33. Yamamura, H, Hiraide, A, Matsuoka, T, Takaoka, M, Shimazu, T, Sugimoto, H. Does growth hormone augment brain edema caused by brain injury? A study with a freeze brain injury model in the rat. J Trauma. 1999;46(2):2926.CrossRefGoogle ScholarPubMed
34. Godoy, DA, Pinero, GR, Svampa, S, Papa, F, Di Napoli, M. Hyperglycemia and short-term outcome in patients with spontaneous intracerebral hemorrhage. Neurocrit Care. 2008; 9(2):21729.Google Scholar
35. Waeschle, RM, Moerer, O, Hilgers, R, Herrmann, P, Neumann, P, Quintel, M. The impact of the severity of sepsis on the risk of hypoglycaemia and glycaemic variability. Crit Care. 2008;12(5):R129.Google Scholar
36. Wittenberg, MD, Gattas, DJ, Ryan, A, Totaro, R. Introduction of intensive glycaemic control into a neurosurgical intensive care unit: a retrospective cohort study. Crit Care Resusc. 2008;10(3):2038 Google Scholar
37. Lacherade, JC, Jabre, P, Bastuji-Garin, S, Grimaldi, D, Fangio, P, Theron, V, et al. Failure to achieve glycemic control despite intensive insulin therapy in a medical ICU: incidence and influence on ICU mortality. Intensive Care Med. 2007;33(5):81421.Google Scholar
38. Shaw, GM, Chase, JG, Wong, J, Lin, J, Lotz, T, Le Compte, AJ, et al. Rethinking glycaemic control in critical illness-from concept to clinical practice change. Crit Care Resusc. 2006;8(2):909.Google Scholar
39. Jeejeebhoy, KN. Permissive underfeeding of the critically ill patient. Nutr Clin Pract. 2004;19(5):47780.Google Scholar
40. Powell-Tuck, J. Nutritional interventions in critical illness. Proc Nutr Soc. 2007;66(1):1624.Google Scholar
41. Krishnan, JA, Parce, PB, Martinez, A, Diette, GB, Brower, RG. Caloric intake in medical ICU patients: consistency of care with guidelines and relationship to clinical outcomes. Chest. 2003; 124(1):297305.CrossRefGoogle ScholarPubMed
42. Mitchell, I, Finfer, S, Bellomo, R, Higlett, T. Management of blood glucose in the critically ill in Australia and New Zealand: a practice survey and inception cohort study. Intensive Care Med. 2006;32(6):86774.Google Scholar