Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T06:12:39.690Z Has data issue: false hasContentIssue false

Canadian Association of Neurosciences Review: Prion Protein and Prion Diseases: The Good and the Bad

Published online by Cambridge University Press:  02 December 2014

Malcolm J. Gains
Affiliation:
Department of Neurology and Neurosurgery, McGill University Département de pathologie et microbiologie, Faculté de médecine vétérinaire, University de Montréal, St. Hyacinthe, Québec, Canada
Andrea C. LeBlanc
Affiliation:
Department of Neurology and Neurosurgery, McGill University The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the 1700's a strange new disease affecting sheep was recognized in Europe. The disease later became known as “Scrapie” and was the first of a family of similar diseases affecting a number of species that are now known as the Transmissible Spongiform Encephalopathies (TSEs). The appearance of a new disease in humans linked to the consumption of meat products from infected cattle has stimulated widespread public concern and scientific interest in the prion protein and related diseases. Nearly 300 years after the first report, these diseases still merit the descriptor “strange”. This family of diseases is characterized by a unique profile of histological changes, can be transmitted as inherited or acquired diseases, as well as apparent sporadic spontaneous generation of the disease. These diseases are believed by many, to be caused by a unique protein only infectious agent. The “prion protein” (PrPC), a term first coined by Stanley Prusiner in 1982 is crucial to the development of these diseases, apparently by acting as a substrate for an abnormal disease associated form. However, aside from being critical to the pathogenesis of the disease, the function of PrPC, which is expressed in all mammals, has defied definitive description. Several roles have been proposed on the basis of in vitro studies, however, thus far, in vivo confirmation has not been forthcoming. The biological features of PrPC also seem to be unusual. Numerous mouse models have been generated in an attempt to understand the pathogenesis of these diseases. This review summarizes the current state of histological features, the etiologic agent, the normal metabolism and the function of the prion protein, as well as the limitations of the mouse models.

Résumé:

RÉSUMÉ:

Au dix-huitième siècle, on s'est aperçu que les moutons étaient atteints d'une nouvelle maladie étrange en Europe. Cette maladie a plus tard été appelée « Scrapie » (la tremblante du mouton). C'était la première d'une famille de maladies similaires atteignant un certain nombre d'espèces animales qu'on désigne maintenant sous le vocable d'encéphalopathies spongiformes transmissibles (EST). L'apparition chez l'humain d'une nouvelle maladie liée à la consommation de produits carnés provenant d'animaux infectés a suscité beaucoup d'inquiétude dans la population et d'intérêt scientifique pour la protéine prion et les maladies qui y sont associées. Environ 300 ans après que les premiers cas aient été rapportés, ces maladies méritent toujours d'être décrites comme « étranges ». Cette famille de maladies est caractérisée par un profil unique de changements histologiques, elles peuvent être transmises de façon héréditaires ou être acquises et on peut observer des cas sporadiques dont la génération semble spontanée. Plusieurs croient que ces maladies sont causées par un agent infectieux de nature uniquement protéique. La « protéine prion » (PrPc), une expression utilisée pour la première fois par Stanley Prusiner en 1982, est cruciale pour le développement de ces maladies agissant, semble-t-il, comme substrat à une forme anormale de la protéine associée à la maladie. Cependant, la fonction de PrPc, une protéine qui est exprimée chez tous les mammifères, n'a pas encore pu être décrite définitivement, en dehors du fait qu'elle est cruciale dans la pathogenèse de la maladie. On a proposé plusieurs rôles pour la PrPc sur la base des études in vitro, mais aucun n'a jamais été confirmé in vivo. Les caractéristiques biologiques de la PrPc semblent également inusitées. Plusieurs modèles de souris ont été créés afin d'essayer de comprendre la pathogenèse de ces maladies. Cette revue fait le sommaire des connaissances actuelles sur les caractéristiques histologiques, l'agent étiologique, le métabolisme normal et la fonction de la protéine prion, de même que les limites des modèles chez la souris.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Wechselberger, C, Wurm, S, Pfarr, W, Hoglinger, O. The physiological functions of prion protein. Exp Cell Res. 2002;281(1):1-8.CrossRefGoogle ScholarPubMed
2. Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519-50.CrossRefGoogle ScholarPubMed
3. Williams, ES, Young, S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J Wildl Dis. 1980;16(1):89-98 Google Scholar
4. Wells, GA, Scott, AC, Johnson, CT, Gunning, RF, Hancock, RD, Jeffrey, M, et al. A novel progressive spongiform encephalopathy in cattle. Vet Rec. 1987;121(18):419-20.CrossRefGoogle ScholarPubMed
5. Wyatt, JM, Pearson, GR, Smerdon, TN, Gruffydd-Jones, TJ, Wells, GA, Wilesmith, JW. Naturally occurring scrapie-like spongiform encephalopathy in five domestic cats. Vet Rec. 1991;129(11):233-6.CrossRefGoogle ScholarPubMed
6. Belay, ED. Transmissible spongiform encephalopathies in humans. Annu Rev Microbiol. 1999;53:283-314.Google Scholar
7. Collinge, J. Variant Creutzfeldt-Jakob disease. Lancet. 1999;354(9175):317-23.Google Scholar
8. Stack, MJ, Balachandran, A, Chaplin, M, Davis, L, Czub, S, Miller, B. The first Canadian indigenous case of bovine spongiform encephalopathy (BSE) has molecular characteristics for prion protein that are similar to those of BSE in the United Kingdom but differ from those of chronic wasting disease in captive elk and deer. Can Vet J. 2004;45(10):825-30.Google ScholarPubMed
9. Gajdusek, DC, Zigas, V. Degenerative disease of the central nervous system in New Guinea; the endemic occurrence of kuru in the native population. N Engl J Med. 1957;257(20):974-8.CrossRefGoogle ScholarPubMed
10. Gajdusek, DC, Gibbs, CJ, Alpers, M. Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature. 1966;209(25): 794-6.CrossRefGoogle ScholarPubMed
11. Bernoulli, C, Siegfried, J, Baumgartner, G, Regli, F, Rabinowicz, T, Gajdusek, DC, et al. Danger of accidental person-to-person transmission of Creutzfeldt-Jakob disease by surgery. Lancet. 1977;1(8009):478-9.CrossRefGoogle ScholarPubMed
12. Duffy, P, Wolf, J, Collins, G, DeVoe, AG, Streeten, B, Cowen, D. Letter: Possible person-to-person transmission of Creutzfeldt-Jakob disease. N Engl J Med. 1974;290(12):692-3.Google Scholar
13. Thadani, V, Penar, PL, Partington, J, Kalb, R, Janssen, R, Schonberger, LB, et al. Creutzfeldt-Jakob disease probably acquired from a cadaveric dura mater graft. Case report. J Neurosurg. 1988; 69(5):766-9.CrossRefGoogle ScholarPubMed
14. Cochius, JI, Burns, RJ, Blumbergs, PC, Mack, K, Alderman, CP. Creutzfeldt-Jakob disease in a recipient of human pituitaryderived gonadotrophin. Aust N Z J Med. 1990;20(4):592-3.CrossRefGoogle Scholar
15. Brown, P, Cathala, F, Raubertas, RF, Gajdusek, DC, Castaigne, P. The epidemiology of Creutzfeldt-Jakob disease: conclusion of a 15-year investigation in France and review of the world literature. Neurology. 1987;37(6):895-904.Google Scholar
16. Collinge, J. Human prion diseases and bovine spongiform encephalopathy (BSE). Hum Mol Genet. 1997;6(10):1699-705.CrossRefGoogle ScholarPubMed
17. Prusiner, SB. Prions. Proc Natl Acad Sci USA. 1998;95(23): 13363-83.Google Scholar
18. Goldfarb, LG, Brown, P, Haltia, M, Cathala, F, McCombie, WR, Kovanen, J, et al. Creutzfeldt-Jakob disease cosegregates with the codon 178Asn PRNP mutation in families of European origin. Ann Neurol. 1992;31(3):274-81.CrossRefGoogle ScholarPubMed
19. Goldfarb, LG, Petersen, RB, Tabaton, M, Brown, P, LeBlanc, AC, Montagna, P, et al. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science. 1992;258(5083):8068.Google Scholar
20. Finckh, U, Muller-Thomsen, T, Mann, U, Eggers, C, Marksteiner, J, Meins, W, et al. High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes. Am J Hum Genet. 2000;66(1):110-7.CrossRefGoogle ScholarPubMed
21. Owen, F, Poulter, M, Lofthouse, R, Collinge, J, Crow, TJ, Risby, D, et al. Insertion in prion protein gene in familial Creutzfeldt-Jakob disease. Lancet. 1989;1(8628):51-2.CrossRefGoogle ScholarPubMed
22. Budka, H, Aguzzi, A, Brown, P, Brucher, JM, Bugiani, O, Gullota, F, et al. Neuropathological diagnosis criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathology. 1995;5:459-66.Google Scholar
23. Dlouhy, SR, Hsiao, K, Farlow, MR, Foroud, T, Conneally, PM, Johnson, P, et al. Linkage of the Indiana kindred of Gerstmann-Straussler-Scheinker disease to the prion protein gene. Nat Genet. 1992;1(1):64-7.CrossRefGoogle Scholar
24. Medori, R, Tritschler, H, LeBlanc, A, Villare, F, Manetto, V, Chen, H, et al. Fatal familial insomnia is a prion disease with a mutation at codon 178 of the prion protein gene. New Engl J Med. 1992;326:444-9.CrossRefGoogle ScholarPubMed
25. Nitrini, R, Rosemberg, S, Passos-Bueno, MR, Lughetti, P, Papadopoulos, M, Carrilho, PE, et al. Familial Spongiform Encephalopathy with distinct clinico-pathological features associated with a novel prion protein gene mutation at codon 183. Ann. Neurol. 1997;42:138-46.Google Scholar
26. Parchi, P, Castellani, R, Capellari, S, Ghetti, B, Young, K, Chen, SG, et al. Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann Neurol. 1996;39(6):76778.CrossRefGoogle ScholarPubMed
27. Prusiner, SB. The prion diseases. Brain Pathol. 1998;8(3):499-513.Google Scholar
28. Mastrianni, JA, Nixon, R, Layzer, R, Telling, GC, Han, D, DeArmond, SJ, et al. Prion protein conformation in a patient with sporadic fatal insomnia. N Engl J Med. 1999;340(21):1630-8.Google Scholar
29. Lampert, PW, Gajdusek, DC, Gibbs, CJ Jr. Subacute spongiform virus encephalopathies. Scrapie, Kuru and Creutzfeldt-Jakob disease: a review. Am J Pathol. 1972;68(3):626-52.Google Scholar
30. Bell, JE, Ironside, JW. Neuropathology of spongiform encephalopathies in humans. Br Med Bull. 1993;49(4):738-77.CrossRefGoogle ScholarPubMed
31. Bruce, ME, Fraser, H. Scrapie strain variation and its implications. Curr Top Microbiol Immunol. 1991;172:125-38.Google ScholarPubMed
32. Jeffrey, M, Fraser, JR, Halliday, WG, Fowler, N, Goodsir, CM, Brown, DA. Early unsuspected neuron and axon terminal loss in scrapieinfected mice revealed by morphometry and immunocytochemistry. Neuropathol Appl Neurobiol. 1995;21(1):41-9.Google Scholar
33. Wells, GA, Hancock, RD, Cooley, WA, Richards, MS, Higgins, RJ, David, GP. Bovine spongiform encephalopathy: diagnostic significance of vacuolar changes in selected nuclei of the medulla oblongata. Vet Rec. 1989;125(21):521-4.Google Scholar
34. Wells, GA, Wilesmith, JW, McGill, IS. Bovine spongiform encephalopathy: a neuropathological perspective. Brain Pathol. 1991;1(2):69-78.Google Scholar
35. Ryder, SJ, Hawkins, SA, Dawson, M, Wells, GA. The neuropathology of experimental bovine spongiform encephalopathy in the pig. J Comp Pathol. 2000;122(2-3):131-43.Google Scholar
36. Wells, GA. Pathology of nonhuman spongiform encephalopathies: variations and their implications for pathogenesis. Dev Biol Stand. 1993;80:61-9.Google ScholarPubMed
37. Manuelidis, EE, Gorgacz, EJ, Manuelidis, L. Interspecies transmission of Creutzfeldt-Jakob disease to Syrian hamsters with reference to clinical syndromes and strains of agent. Proc Natl Acad Sci U S A. 1978;75(7):3432-6.CrossRefGoogle ScholarPubMed
38. Jeffrey, M, Scott, JR, Fraser, H. Scrapie inoculation of mice: light and electron microscopy of the superior colliculi. Acta Neuropathol (Berl). 1991;81(5):562-71.CrossRefGoogle ScholarPubMed
39. Fraser, H, Dickinson, AG. The sequential development of the brain lesion of scrapie in three strains of mice. J Comp Pathol. 1968;78(3):301-11.Google Scholar
40. Lasmezas, CI, Deslys, JP, Robain, O, Jaegly, A, Beringue, V, Peyrin, JM, et al. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science. 1997;275(5298):4025.CrossRefGoogle ScholarPubMed
41. Sato, Y, Ohta, M, Tateishi, J. Experimental transmission of human subacute spongiform encephalopathy to small rodents. II. Ultrastructural study of spongy state in the gray and white matter. Acta Neuropathol (Berl). 1980;51(2):135-40.CrossRefGoogle Scholar
42. Kim, JH, Manuelidis, EE. Ultrastructural findings in experimental Creutzfeldt-Jakob disease in guinea pigs. J Neuropathol Exp Neurol. 1983;42(1):29-43.Google Scholar
43. Kim, JH, Manuelidis, EE. Serial ultrastructural study of experimental Creutzfeldt-Jacob disease in guinea pigs. Acta Neuropathol (Berl). 1986;69(1-2):81-90.Google Scholar
44. Baker, HF, Duchen, LW, Jacobs, JM, Ridley, RM. Spongiform encephalopathy transmitted experimentally from Creutzfeldt-Jakob and familial Gerstmann-Straussler-Scheinker diseases. Brain. 1990;113 (Pt 6):1891-909.CrossRefGoogle ScholarPubMed
45. Liberski, PP, Yanagihara, R, Nerurkar, V, Gajdusek, DC. Further ultrastructural studies of lesions produced in the optic nerve by tumor necrosis factor alpha (TNF-alpha): a comparison with experimental Creutzfeldt-Jakob disease. Acta Neurobiol Exp (Wars). 1994;54(3):209-18.Google Scholar
46. Bruce, ME. Agent replication dynamics in a long incubation period model of mouse scrapie. J Gen Virol. 1985;66 (Pt 12):2517-22.Google Scholar
47. Prusiner, SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216(4542):136-44.Google Scholar
48. Baringer, JR, Bowman, KA, Prusiner, SB. Replication of the scrapie agent in hamster brain precedes neuronal vacuolation. J Neuropathol Exp Neurol. 1983;42(5):539-47.CrossRefGoogle ScholarPubMed
49. Marsh, RF, Sipe, JC, Morse, SS, Hanson, RP. Transmissible mink encephalopathy. Reduced spongiform degeneration in aged mink of the Chediak-Higashi genotype. Lab Invest. 1976;34(4):381-6.Google Scholar
50. Yagi, H, Irino, M, Matsushita, T, Katoh, S, Umezawa, M, Tsuboyama, T, et al. Spontaneous spongy degeneration of the brain stem in SAM-P/8 mice, a newly developed memory-deficient strain. J Neuropathol Exp Neurol. 1989;48(5):577-90.CrossRefGoogle ScholarPubMed
51. Bundza, A, Charlton, KM. Comparison of spongiform lesions in experimental scrapie and rabies in skunks. Acta Neuropathol (Berl). 1988;76(3):275-80.Google Scholar
52. Sharpe, AH, Hunter, JJ, Chassler, P, Jaenisch, R. Role of abortive retroviral infection of neurons in spongiform CNS degeneration. Nature. 1990;346(6280):181-3.Google Scholar
53. Jeffrey, M, Goodbrand, IA, Goodsir, CM. Pathology of the transmissible spongiform encephalopathies with special emphasis on ultrastructure. Micron. 1995;26(3):277-98.Google Scholar
54. Jeffrey, M, Goodsir, CM, Bruce, ME, McBride, PA, Scott, JR, Halliday, WG. Infection specific prion protein (PrP) accumulates on neuronal plasmalemma in scrapie infected mice. Neurosci Lett. 1992;147(1):106-9.Google Scholar
55. Jeffrey, M, Goodsir, CM, Bruce, ME, McBride, PA, Fowler, N, Scott, JR. Murine scrapie-infected neurons in vivo release excess prion protein into the extracellular space. Neurosci Lett. 1994;174(1):39-42.Google Scholar
56. Mackenzie, A. Immunohistochemical demonstration of glial fibrillary acidic protein in scrapie. J Comp Pathol. 1983;93(2):251-9.Google Scholar
57. Hudson, AJ, Farrell, MA, Kalnins, R, Kaufmann, JC. Gerstmann-Straussler-Scheinker disease with coincidental familial onset. Ann Neurol. 1983;14(6):670-8.Google Scholar
58. Norenberg, MD. Astrocyte responses to CNS injury. J Neuropathol Exp Neurol. 1994;53(3):213-20.Google Scholar
59. Berg, LJ. Insights into the role of the immune system in prion diseases. Proc Natl Acad Sci U S A. 1994;91(2):429-32.Google Scholar
60. Williams, AE, van Dam, AM, Man, AHWK, Berkenbosch, F, Eikelenboom, P, Fraser, H. Cytokines, prostaglandins and lipocortin-1 are present in the brains of scrapie-infected mice. Brain Res. 1994;654(2):200-6.CrossRefGoogle ScholarPubMed
61. Kim, JI, Ju, WK, Choi, JH, Choi, E, Carp, RI, Wisniewski, HM, et al. Expression of cytokine genes and increased nuclear factor-kappa B activity in the brains of scrapie-infected mice. Brain Res Mol Brain Res. 1999;73(1-2):17-27.Google Scholar
62. Klatzo, I, Gajdusek, DC, Zigas, V. Pathology of Kuru. Lab Invest. 1959;8(4):799-847.Google ScholarPubMed
63. DeArmond, SJ, McKinley, MP, Barry, RA, Braunfeld, MB, McColloch, JR, Prusiner, SB. Identification of prion amyloid filaments in scrapie-infected brain. Cell. 1985;41(1):221-35.CrossRefGoogle ScholarPubMed
64. Wisniewski, HM, Vorbrodt, AW, Wegiel, J, Morys, J, Lossinsky, AS. Ultrastructure of the cells forming amyloid fibers in Alzheimer disease and scrapie. Am J Med Genet Suppl. 1990;7:287-97.Google Scholar
65. Alper, T, Haig, DA, Clarke, MC. The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun. 1966;22(3): 278-84.Google Scholar
66. Pattison, IH, Jones, KM. The possible nature of the transmissible agent of scrapie. Vet Rec. 1967;80(1):2-9.Google Scholar
67. Bolton, DC, McKinley, MP, Prusiner, SB. Identification of a protein that purifies with the scrapie prion. Science. 1982;218(4579): 1309-11.Google Scholar
68. Oesch, B, Westaway, D, Walchli, M, McKinley, MP, Kent, SB, Aebersold, R, et al. A cellular gene encodes scrapie PrP 27-30 protein. Cell. 1985;40(4):735-46.Google Scholar
69. Caughey, B, Raymond, GJ. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J Biol Chem. 1991;266(27):18217-23.Google Scholar
70. Borchelt, DR, Scott, M, Taraboulos, A, Stahl, N, Prusiner, SB. Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol. 1990;110(3):743-52.Google Scholar
71. Pan, KM, Baldwin, M, Nguyen, J, Gasset, M, Serban, A, Groth, D, et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA. 1993;90(23):10962-6.Google Scholar
72. Telling, GC, Haga, T, Torchia, M, Tremblay, P, DeArmond, SJ, Prusiner, SB. Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice. Genes Dev. 1996;10(14):1736-50.Google Scholar
73. Westaway, D, Telling, G, Priola, S. Prions. Proc Natl Acad Sci U S A. 1998;95(19):11030-1.Google Scholar
74. Telling, GC, Scott, M, Mastrianni, J, Gabizon, R, Torchia, M, Cohen, FE, et al. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell. 1995;83(1):7990.Google Scholar
75. Rohwer, RG. Scrapie infectious agent is virus-like in size and susceptibility to inactivation. Nature. 1984;308(5960):658-62.Google Scholar
76. Narang, H. A critical review of the nature of the spongiform encephalopathy agent: protein theory versus virus theory. Exp Biol Med (Maywood). 2002;227(1):4-19.CrossRefGoogle ScholarPubMed
77. Narang, HK. Evidence that single-stranded DNA wrapped around the tubulofilamentous particles termed “nemaviruses” is the genome of the scrapie agent. Res Virol. 1998;149(6):375-82.Google Scholar
78. Kimberlin, RH, Walker, CA, Fraser, H. The genomic identity of different strains of mouse scrapie is expressed in hamsters and preserved on reisolation in mice. J Gen Virol. 1989;70(Pt 8):2017-25.CrossRefGoogle ScholarPubMed
79. Somerville, RA. TSE agent strains and PrP: reconciling structure and function. Trends Biochem Sci. 2002;27(12):606-12.CrossRefGoogle ScholarPubMed
80. Rico, A. Prion: toxic or infectious agent? Med Hypotheses. 2003;60(2):209-14.Google Scholar
81. Kimberlin, RH. Scrapie agent: prions or virinos? Nature. 1982;297(5862):107–8.Google Scholar
82. Manuelidis, EE, Manuelidis, L. A transmissible Creutzfeldt-Jakob disease-like agent is prevalent in the human population. Proc Natl Acad Sci U S A. 1993;90(16):7724-8.CrossRefGoogle ScholarPubMed
83. Manuelidis, L, Sklaviadis, T, Akowitz, A, Fritch, W. Viral particles are required for infection in neurodegenerative Creutzfeldt-Jakob disease. Proc Natl Acad Sci USA. 1995;92(11):5124-8.CrossRefGoogle ScholarPubMed
84. Bastian, FO. Spiroplasma as a candidate agent for the transmissible spongiform encephalopathies. J Neuropathol Exp Neurol. 2005;64(10):833-8.Google Scholar
85. Taraboulos, A, Serban, D, Prusiner, SB. Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells. J Cell Biol. 1990;110(6):2117-32.Google Scholar
86. Swietnicki, W, Petersen, RB, Gambetti, P, Surewicz, WK. Familial mutations and the thermodynamic stability of the recombinant human prion protein. J Biol Chem. 1998;273(47):31048-52.Google Scholar
87. Mastrangelo, P, Westaway, D. Biology of the prion gene complex. Biochem Cell Biol. 2001;79(5):613-28.Google Scholar
88. Ma, J, Lindquist, S. De novo generation of a PrPSc-like conformation in living cells. Nat Cell Biol. 1999;1(6):358-61.Google Scholar
89. Qin, K, Yang, DS, Yang, Y, Chishti, MA, Meng, LJ, Kretzschmar, HA, et al. Copper(II)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J Biol Chem. 2000;275(25):19121-31.Google Scholar
90. Brown, DR, Hafiz, F, Glasssmith, LL, Wong, BS, Jones, IM, Clive, C, et al. Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J. 2000;19(6):1180-6.Google Scholar
91. Klein, MA, Frigg, R, Flechsig, E, Raeber, AJ, Kalinke, U, Bluethmann, H, et al. A crucial role for B cells in neuroinvasive scrapie. Nature. 1997;390(6661):687-90.CrossRefGoogle ScholarPubMed
92. Glatzel, M, Heppner, FL, Albers, KM, Aguzzi, A. Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron. 2001;31(1):25-34.Google Scholar
93. Nicotera, P. A route for prion neuroinvasion. Neuron. 2001;31(3):345-8.Google Scholar
94. Montrasio, F, Frigg, R, Glatzel, M, Klein, MA, Mackay, F, Aguzzi, A, et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science. 2000;288(5469):1257-9.Google Scholar
95. Beekes, M, McBride, PA, Baldauf, E. Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J Gen Virol. 1998;79(Pt 3):601-7.Google Scholar
96. Prusiner, SB. Molecular biology of prion diseases. Science. 1991;252(5012):1515-22.Google Scholar
97. Jarrett, JT, Lansbury, PT Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell. 1993;73(6):1055–8.Google Scholar
98. Riesner, D, Kellings, K, Post, K, Wille, H, Serban, H, Groth, D, et al. Disruption of prion rods generates 10-nm spherical particles having high alpha-helical content and lacking scrapie infectivity. J Virol. 1996;70(3):1714-22.Google Scholar
99. Castilla, J, Saa, P, Hetz, C, Soto, C. In vitro generation of infectious scrapie prions. Cell. 2005;121(2):195-206.Google Scholar
100. Bueler, H, Aguzzi, A, Sailer, A, Greiner, RA, Autenried, P, Aguet, M, et al. Mice devoid of PrP are resistant to scrapie. Cell. 1993;73(7):1339-47.Google Scholar
101. Brandner, S, Isenmann, S, Raeber, A, Fischer, M, Sailer, A, Kobayashi, Y, et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature. 1996;379(6563):339–43.Google Scholar
102. Brandner, S, Isenmann, S, Kuhne, G, Aguzzi, A. Identification of the end stage of scrapie using infected neural grafts. Brain Pathol. 1998;8(1):19-27.Google Scholar
103. Blattler, T, Brandner, S, Raeber, AJ, Klein, MA, Voigtlander, T, Weissmann, C, et al. PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature. 1997;389(6646):69-73 Google Scholar
104. Fraser, H, Brown, KL, Stewart, K, McConnell, I, McBride, P, Williams, A. Replication of scrapie in spleens of SCID mice follows reconstitution with wild-type mouse bone marrow. J Gen Virol. 1996;77(Pt 8):1935-40.Google Scholar
105. Klein, MA, Frigg, R, Raeber, AJ, Flechsig, E, Hegyi, I, Zinkernagel, RM, et al. PrP expression in B lymphocytes is not required for prion neuroinvasion. Nat Med. 1998;4(12):1429-33.Google Scholar
106. Jeffrey, M, Halliday, WG, Bell, J, Johnston, AR, MacLeod, NK, Ingham, C, et al. Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol. 2000;26(1):41-54.Google Scholar
107. Belichenko, PV, Brown, D, Jeffrey, M, Fraser, JR. Dendritic and synaptic alterations of hippocampal pyramidal neurones in scrapie-infected mice. Neuropathol Appl Neurobiol. 2000;26(2):143-9.Google Scholar
108. Siso, S, Puig, B, Varea, R, Vidal, E, Acin, C, Prinz, M, et al. Abnormal synaptic protein expression and cell death in murine scrapie. Acta Neuropathol (Berl). 2002;103(6):615-26.Google Scholar
109. Kretzschmar, HA, Stowring, LE, Westaway, D, Stubblebine, WH, Prusiner, SB, Dearmond, SJ. Molecular cloning of a human prion protein cDNA. DNA. 1986;5(4):315-24.Google Scholar
110. Puckett, C, Concannon, P, Casey, C, Hood, L. Genomic structure of the human prion protein gene. Am J Hum Genet. 1991;49(2):320-9.Google Scholar
111. Lee, IY, Westaway, D, Smit, AF, Wang, K, Seto, J, Chen, L, et al. Complete genomic sequence and analysis of the prion protein gene region from three mammalian species. Genome Res. 1998;8(10):1022-37.Google Scholar
112. Mahal, SP, Asante, EA, Antoniou, M, Collinge, J. Isolation and functional characterisation of the promoter region of the human prion protein gene. Gene. 2001;268(1-2):105-14.Google Scholar
113. Liemann, S, Glockshuber, R. Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry. 1999;38(11):3258-67.Google Scholar
114. Yin, S, Yu, S, Li, C, Wong, P, Chang, B, Xiao, F, et al. Prion proteins with insertion mutations have altered N-terminal conformation and increased ligand binding activity and are more susceptible to oxidative attack. J Biol Chem. 2006;281(16):10698-705.Google Scholar
115. Apetri, AC, Surewicz, K, Surewicz, WK. The effect of disease-associated mutations on the folding pathway of human prion protein. J Biol Chem. 2004;279(17):18008-14.CrossRefGoogle ScholarPubMed
116. Zimmermann, K, Turecek, PL, Schwarz, HP. Genotyping of the prion protein gene at codon 129. Acta Neuropathol (Berl). 1999;97(4):355-8.Google Scholar
117. Palmer, MS, Dryden, AJ, Hughes, JT, Collinge, J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature. 1991;352(6333):340-2.CrossRefGoogle ScholarPubMed
118. Collinge, J, Sidle, KC, Meads, J, Ironside, J, Hill, AF. Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature. 1996;383(6602):685-90.Google Scholar
119. Peden, AH, Head, MW, Ritchie, DL, Bell, JE, Ironside, JW. Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet. 2004;364(9433):527-9.Google Scholar
120. Chiesa, R, Piccardo, P, Ghetti, B, Harris, DA. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron. 1998;21(6):1339-51.Google Scholar
121. Bendheim, PE, Brown, HR, Rudelli, RD, Scala, LJ, Goller, NL, Wen, GY, et al. Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology. 1992;42(1):149-56.Google Scholar
122. Brown, DR, Schmidt, B, Groschup, MH, Kretzschmar, HA. Prion protein expression in muscle cells and toxicity of a prion protein fragment. Eur J Cell Biol. 1998;75(1):29-37.CrossRefGoogle ScholarPubMed
123. Wopfner, F, Weidenhofer, G, Schneider, R, von Brunn, A, Gilch, S, Schwarz, TF, et al. Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol. 1999;289(5):1163-78.Google Scholar
124. Simonic, T, Duga, S, Strumbo, B, Asselta, R, Ceciliani, F, Ronchi, S. cDNA cloning of turtle prion protein. FEBS Lett. 2000;469(1):33-8.Google Scholar
125. Shaked, Y, Rosenmann, H, Talmor, G, Gabizon, R. A C-terminaltruncated PrP isoform is present in mature sperm. J Biol Chem. 1999;274(45):32153-8.CrossRefGoogle ScholarPubMed
126. Williams, WM, Stadtman, ER, Moskovitz, J. Ageing and exposure to oxidative stress in vivo differentially affect cellular levels of PrP in mouse cerebral microvessels and brain parenchyma. Neuropathol Appl Neurobiol. 2004;30(2):161-8.Google Scholar
127. van Rheede, T, Smolenaars, MM, Madsen, O, de Jong, WW. Molecular evolution of the mammalian prion protein. Mol Biol Evol. 2003;20(1):111-21.Google Scholar
128. Hegde, RS, Mastrianni, JA, Scott, MR, DeFea, KA, Tremblay, P, Torchia, M, et al. A transmembrane form of the prion protein in neurodegenerative disease. Science. 1998;279(5352):827-34.Google Scholar
129. Nunziante, M, Gilch, S, Schatzl, HM. Essential role of the prion protein N terminus in subcellular trafficking and half-life of cellular prion protein. J Biol Chem. 2003;278(6):3726-34.Google Scholar
130. Stahl, N, Prusiner, SB. Prions and prion proteins. FASEB J. 1991;5(13):2799-807.Google Scholar
131. Rudd, PM, Endo, T, Colominas, C, Groth, D, Wheeler, SF, Harvey, DJ, et al. Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci U S A. 1999;96(23):13044-9.Google Scholar
132. Caughey, B, Race, RE, Ernst, D, Buchmeier, MJ, Chesebro, B. Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J Virol. 1989;63(1):175-81.Google Scholar
133. Harris, DA. Trafficking, turnover and membrane topology of PrP. Br Med Bull. 2003;66:71-85.Google Scholar
134. Stahl, N, Baldwin, MA, Hecker, R, Pan, KM, Burlingame, AL, Prusiner, SB. Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry. 1992;31(21):504-53.Google Scholar
135. Rudd, PM, Merry, AH, Wormald, MR, Dwek, RA. Glycosylation and prion protein. Curr Opin Struct Biol. 2002;12(5):578-86.Google Scholar
136. Wiseman, F, Cancellotti, E, Manson, J. Glycosylation and misfolding of PrP. Biochem Soc Trans. 2005;33(Pt 5):1094-5.Google Scholar
137. Ermonval, M, Mouillet-Richard, S, Codogno, P, Kellermann, O, Botti, J. Evolving views in prion glycosylation: functional and pathological implications. Biochimie. 2003;85(1-2):33-45.Google Scholar
138. Pan, T, Li, R, Wong, BS, Liu, T, Gambetti, P, Sy, MS. Heterogeneity of normal prion protein in two- dimensional immunoblot: presence of various glycosylated and truncated forms. J Neurochem. 2002;81(5):1092-101.Google Scholar
139. Naslavsky, N, Stein, R, Yanai, A, Friedlander, G, Taraboulos, A. Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem. 1997;272(10):6324-31.Google Scholar
140. Gilch, S, Kehler, C, Schatzl, HM. The prion protein requires cholesterol for cell surface localization. Mol Cell Neurosci. 2006;31(2):346-53.Google Scholar
141. Critchley, P, Kazlauskaite, J, Eason, R, Pinheiro, TJ. Binding of prion proteins to lipid membranes. Biochem Biophys Res Commun. 2004;313(3):559-67.Google Scholar
142. Borchelt, DR, Taraboulos, A, Prusiner, SB. Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem. 1992;267(23):16188-99.Google Scholar
143. Shyng, SL, Huber, MT, Harris, DA. A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J Biol Chem. 1993;268(21):15922-8.Google Scholar
144. Pauly, PC, Harris, DA. Copper stimulates endocytosis of the prion protein. J Biol Chem. 1998;273(50):33107-10.Google Scholar
145. Lee, KS, Magalhaes, AC, Zanata, SM, Brentani, RR, Martins, VR, Prado, MA. Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells. J Neurochem. 2001;79(1):79-87.Google Scholar
146. Sunyach, C, Jen, A, Deng, J, Fitzgerald, KT, Frobert, Y, Grassi, J, et al. The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein. Embo J. 2003;22(14): 3591-601.Google Scholar
147. Shyng, SL, Lehmann, S, Moulder, KL, Harris, DA. Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J Biol Chem. 1995;270(50):30221-9.Google Scholar
148. Vey, M, Pilkuhn, S, Wille, H, Nixon, R, DeArmond, SJ, Smart, EJ, et al. Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci USA. 1996;93(25):14945-9.Google Scholar
149. Gaidarov, I, Keen, JH. Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J Cell Biol. 1999;146(4):755-64.Google Scholar
150. Nichols, BJ, Kenworthy, AK, Polishchuk, RS, Lodge, R, Roberts, TH, Hirschberg, K, et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol. 2001; 153(3):529-41.Google Scholar
151. Shyng, SL, Heuser, JE, Harris, DA. A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J Cell Biol. 1994; 125(6):1239-50.Google Scholar
152. Pelkmans, L, Kartenbeck, J, Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol. 2001;3(5):473-83.Google Scholar
153. Laine, J, Marc, ME, Sy, MS, Axelrad, H. Cellular and subcellular morphological localization of normal prion protein in rodent cerebellum. Eur J Neurosci. 2001;14(1):47-56.Google Scholar
154. Mironov, A Jr., Latawiec, D, Wille, H, Bouzamondo-Bernstein, E, Legname, G, Williamson, RA, et al. Cytosolic prion protein in neurons. J Neurosci. 2003;23(18):7183-93.Google Scholar
155. Roucou, X, Guo, Q, Zhang, Y, Goodyer, CG, LeBlanc, AC. Cytosolic prion protein is not toxic and protects against Bax-mediated cell death in human primary neurons. J Biol Chem. 2003; 278(42):40877-81.Google Scholar
156. Ma, J, Lindquist, S. Conversion of PrP to a self-perpetuating PrPSclike conformation in the cytosol. Science. 2002;298(5599): 1785-8.Google Scholar
157. Yedidia, Y, Horonchik, L, Tzaban, S, Yanai, A, Taraboulos, A. Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J. 2001;20(19):5383-91.Google Scholar
158. Zanusso, G, Petersen, RB, Taocong, J, Jing, Y, Kanoush, R, Ferrari, S, et al. Proteosomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. J Biol Chem. 1999;274:23396-404.Google Scholar
159. Ma, J, Lindquist, S. Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci USA. 2001;98(26):14955-60.CrossRefGoogle Scholar
160. Rane, NS, Yonkovich, JL, Hegde, RS. Protection from cytosolic prion protein toxicity by modulation of protein translocation. EMBO J. 2004;23(23):4550-9.Google Scholar
161. Drisaldi, B, Stewart, RS, Adles, C, Stewart, LR, Quaglio, E, Biasini, E, et al. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J Biol Chem. 2003;278(24):21732-43.Google Scholar
162. Ma, J, Wollmann, R, Lindquist, S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science. 2002;298(5599):1781-5.Google Scholar
163. Arnold, JE, Tipler, C, Laszlo, L, Hope, J, Landon, M, Mayer, RJ. The abnormal isoform of the prion protein accumulates in lateendosome-like organelles in scrapie-infected mouse brain. J Pathol. 1995;176(4):403-11.CrossRefGoogle ScholarPubMed
164. Sales, N, Rodolfo, K, Hassig, R, Faucheux, B, Di Giamberardino, L, Moya, KL. Cellular prion protein localization in rodent and primate brain. Eur J Neurosci. 1998;10(7):2464-71.Google Scholar
165. Brown, DR. Prion and prejudice: normal protein and the synapse. Trends Neurosci. 2001;24(2):85-90.Google Scholar
166. Mallucci, GR, Ratte, S, Asante, EA, Linehan, J, Gowland, I, Jefferys, JG, et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 2002;21(3):202-10.Google Scholar
167. Brown, DR, Qin, K, Herms, JW, Madlung, A, Manson, J, Strome, R, et al. The cellular prion protein binds copper in vivo. Nature. 1997;390(6661):684-7.Google Scholar
168. Jackson, GS, Murray, I, Hosszu, LL, Gibbs, N, Waltho, JP, Clarke, AR, et al. Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci USA. 2001;98(15): 8531-5.CrossRefGoogle ScholarPubMed
169. Haigh, CL, Edwards, K, Brown, DR. Copper binding is the governing determinant of prion protein turnover. Mol Cell Neurosci. 2005;30(2):186-96.Google Scholar
170. Brown, DR, Besinger, A. Prion protein expression and superoxide dismutase activity. Biochem J. 1998;334(Pt 2):423-9.Google Scholar
171. Rachidi, W, Vilette, D, Guiraud, P, Arlotto, M, Riondel, J, Laude, H, et al. Expression of prion protein increases cellular copper binding and antioxidant enzyme activities but not copper delivery. J Biol Chem. 2003;278(11):9064-72.Google Scholar
172. Jones, S, Batchelor, M, Bhelt, D, Clarke, AR, Collinge, J, Jackson, GS. Recombinant prion protein does not possess SOD-1 activity. Biochem J. 2005;392(Pt 2):309-12.Google Scholar
173. Brown, DR, Schulz-Schaeffer, WJ, Schmidt, B, Kretzschmar, HA. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol. 1997;146(1):104-12.Google Scholar
174. White, AR, Collins, SJ, Maher, F, Jobling, MF, Stewart, LR, Thyer, JM, et al. Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am J Pathol. 1999;155(5):1723-30.Google Scholar
175. Pereira, GS, Walz, R, Bonan, CD, Battastini, AM, Izquierdo, I, Martins, VR, et al. Changes in cortical and hippocampal ectonucleotidase activities in mice lacking cellular prion protein. Neurosci Lett. 2001;301(1):72-4.Google Scholar
176. Watt, NT, Hooper, NM. The prion protein and neuronal zinc homeostasis. Trends Biochem Sci. 2003;28(8):406-10.Google Scholar
177. Edenhofer, F, Rieger, R, Famulok, M, Wendler, W, Weiss, S, Winnacker, EL. Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. J Virol. 1996;70(7):4724-8.Google Scholar
178. Gabizon, R, Meiner, Z, Halimi, M, Ben-Sasson, SA. Heparin-like molecules bind differentially to prion-proteins and change their intracellular metabolic fate. J Cell Physiol. 1993;157(2):319-25.Google Scholar
179. Spielhaupter, C, Schatzl, HM. PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem. 2001;276(48):44604-12.Google Scholar
180. Graner, E, Mercadante, AF, Zanata, SM, Forlenza, OV, Cabral, AL, Veiga, SS, et al. Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res. 2000;76(1):85-92.Google Scholar
181. Rieger, R, Edenhofer, F, Lasmezas, CI, Weiss, S. The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med. 1997;3(12):1383-8.Google Scholar
182. Chen, S, Mange, A, Dong, L, Lehmann, S, Schachner, M. Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci. 2003;22(2):227-33.Google Scholar
183. Steele, AD, Emsley, JG, Ozdinler, PH, Lindquist, S, Macklis, JD. Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci U S A. 2006;103(9):3416-21.Google Scholar
184. Mouillet-Richard, S, Ermonval, M, Chebassier, C, Laplanche, JL, Lehmann, S, Launay, JM, et al. Signal transduction through prion protein. Science. 2000;289(5486):1925-8.Google Scholar
185. Chiarini, LB, Freitas, AR, Zanata, SM, Brentani, RR, Martins, VR, Linden, R. Cellular prion protein transduces neuroprotective signals. EMBO J. 2002;21(13):3317-26.Google Scholar
186. Zanata, SM, Lopes, MH, Mercadante, AF, Hajj, GN, Chiarini, LB, Nomizo, R, et al. Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J. 2002;21(13):3307-16.Google Scholar
187. Tobler, I, Gaus, SE, Deboer, T, Achermann, P, Fischer, M, Rulicke, T, et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature. 1996;380(6575):639-42.Google Scholar
188. Coitinho, AS, Roesler, R, Martins, VR, Brentani, RR, Izquierdo, I. Cellular prion protein ablation impairs behavior as a function of age. Neuroreport. 2003;14(10):1375-9.Google Scholar
189. Walz, R, Amaral, OB, Rockenbach, IC, Roesler, R, Izquierdo, I, Cavalheiro, EA, et al. Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia. 1999;40(12):1679-82.Google Scholar
190. Papassotiropoulos, A, Wollmer, MA, Aguzzi, A, Hock, C, Nitsch, RM, de Quervain, DJ. The prion gene is associated with human longterm memory. Hum Mol Genet. 2005;14(15):2241-6.Google Scholar
191. Colling, SB, Collinge, J, Jefferys, JG. Hippocampal slices from prion protein null mice: disrupted Ca(2+)-activated K+ currents. Neurosci Lett. 1996;209(1):49-52.CrossRefGoogle ScholarPubMed
192. Herms, JW, Korte, S, Gall, S, Schneider, I, Dunker, S, Kretzschmar, HA. Altered intracellular calcium homeostasis in cerebellar granule cells of prion protein-deficient mice. J Neurochem. 2000;75(4):1487-92.Google Scholar
193. Herms, JW, Tings, T, Dunker, S, Kretzschmar, HA. Prion protein affects Ca2+-activated K+ currents in cerebellar purkinje cells. Neurobiol Dis. 2001;8(2):324-30.Google Scholar
194. Collinge, J, Whittington, MA, Sidle, KC, Smith, CJ, Palmer, MS, Clarke, AR, et al. Prion protein is necessary for normal synaptic function. Nature. 1994;370(6487):2957.Google Scholar
195. Lledo, PM, Tremblay, P, DeArmond, SJ, Prusiner, SB, Nicoll, RA. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc Natl Acad Sci U S A. 1996;93(6):2403-7.Google Scholar
196. Roesler, R, Walz, R, Quevedo, J, de-Paris, F, Zanata, SM, Graner, E, et al. Normal inhibitory avoidance learning and anxiety, but increased locomotor activity in mice devoid of PrP(C). Brain Res Mol Brain Res. 1999;71(2):349-53.Google Scholar
197. Kristensson, K, Feuerstein, B, Taraboulos, A, Hyun, WC, Prusiner, SB, DeArmond, SJ. Scrapie prions alter receptor-mediated calcium responses in cultured cells. Neurology. 1993;43(11):2335-41.Google Scholar
198. Gabus, C, Auxilien, S, Pechoux, C, Dormont, D, Swietnicki, W, Morillas, M, et al. The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein. J Mol Biol. 2001;307(4):1011-21.Google Scholar
199. Huang, Y, Khorchid, A, Gabor, J, Wang, J, Li, X, Darlix, JL, et al. The role of nucleocapsid and U5 stem/A-rich loop sequences in tRNA(3Lys) genomic placement and initiation of reverse transcription in human immunodeficiency virus type 1. J Virol. 1998;72(5):3907-15.CrossRefGoogle ScholarPubMed
200. Derrington, EA, Darlix, JL. The enigmatic multifunctionality of the prion protein. Drug News Perspect. 2002;15(4):206-19.Google Scholar
201. Adler, V, Zeiler, B, Kryukov, V, Kascsak, R, Rubenstein, R, Grossman, A. Small, highly structured RNAs participate in the conversion of human recombinant PrP(Sen) to PrP(Res) in vitro. J Mol Biol. 2003;332(1):47-57.Google Scholar
202. Deleault, NR, Lucassen, RW, Supattapone, S. RNA molecules stimulate prion protein conversion. Nature. 2003;425(6959): 717-20.Google Scholar
203. Mabbott, NA, Brown, KL, Manson, J, Bruce, ME. T-lymphocyte activation and the cellular form of the prion protein. Immunology. 1997;92(2):161-5.Google Scholar
204. Bainbridge, J, Walker, KB. The normal cellular form of prion protein modulates T cell responses. Immunol Lett. 2005;96(1):147-50.Google Scholar
205. Cashman, NR, Loertscher, R, Nalbantoglu, J, Shaw, I, Kascsak, RJ, Bolton, DC, et al. Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell. 1990;61(1):185-92.Google Scholar
206. Durig, J, Giese, A, Schulz-Schaeffer, W, Rosenthal, C, Schmucker, U, Bieschke, J, et al. Differential constitutive and activation-dependent expression of prion protein in human peripheral blood leucocytes. Br J Haematol. 2000;108(3):488-95.Google Scholar
207. de Almeida, CJ, Chiarini, LB, da Silva, JP, PM, ES, Martins, MA, Linden, R. The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol. 2005;77(2):238-46.Google Scholar
208. Dodelet, VC, Cashman, NR. Prion protein expression in human leukocyte differentiation. Blood. 1998;91(5):1556-61.Google Scholar
209. Zhang, CC, Steele, AD, Lindquist, S, Lodish, HF. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA. 2006;103(7):2184-9.Google Scholar
210. Hoshino, S, Inoue, K, Yokoyama, T, Kobayashi, S, Asakura, T, Teramoto, A, et al. Prions prevent brain damage after experimental brain injury: a preliminary report. Acta Neurochir Suppl. 2003;86:297-9.Google Scholar
211. McLennan, NF, Brennan, PM, McNeill, A, Davies, I, Fotheringham, A, Rennison, KA, et al. Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol. 2004;165(1):227-35.Google Scholar
212. Weise, J, Crome, O, Sandau, R, Schulz-Schaeffer, W, Bahr, M, Zerr, I. Upregulation of cellular prion protein (PrPc) after focal cerebral ischemia and influence of lesion severity. Neurosci Lett. 2004;372(1-2):146-50.Google Scholar
213. Marciano, PG, Brettschneider, J, Manduchi, E, Davis, JE, Eastman, S, Raghupathi, R, et al. Neuron-specific mRNA complexity responses during hippocampal apoptosis after traumatic brain injury. J Neurosci. 2004;24(12):2866-76.CrossRefGoogle ScholarPubMed
214. Spudich, A, Frigg, R, Kilic, E, Kilic, U, Oesch, B, Raeber, A, et al. Aggravation of ischemic brain injury by prion protein deficiency: role of ERK-1/-2 and STAT-1. Neurobiol Dis. 2005;20(2):442-9.Google Scholar
215. Solforosi, L, Criado, JR, McGavern, DB, Wirz, S, Sanchez-Alavez, M, Sugama, S, et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science. 2004;303(5663):1514-6.Google Scholar
216. Shyu, WC, Kao, MC, Chou, WY, Hsu, YD, Soong, BW. Heat shock modulates prion protein expression in human NT-2 cells. Neuroreport. 2000;11(4):771-4.Google Scholar
217. Kuwahara, C, Takeuchi, AM, Nishimura, T, Haraguchi, K, Kubosaki, A, Matsumoto, Y, et al. Prions prevent neuronal cell-line death. Nature. 1999;400(6741):225-6.Google Scholar
218. Kim, BH, Lee, HG, Choi, JK, Kim, JI, Choi, EK, Carp, RI, et al. The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Brain Res Mol Brain Res. 2004;124(1):40-50.Google Scholar
219. Kurschner, C, Morgan, JI. Analysis of interaction sites in homo- and heteromeric complexes containing Bcl-2 family members and the cellular prion protein. Brain Res Mol Brain Res. 1996;37(1-2):249-58.Google Scholar
220. Bounhar, Y, Zhang, Y, Goodyer, CG, LeBlanc, A. Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem. 2001;276(42):39145-9.Google Scholar
221. Roucou, X, Giannopoulos, PN, Zhang, Y, Jodoin, J, Goodyer, CG, LeBlanc, A. Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death Differ. 2005;12(7):783-95.Google Scholar
222. Li, A, Harris, DA. Mammalian prion protein suppresses Bax-induced cell death in yeast. J Biol Chem. 2005;280(17):17430-4.Google Scholar
223. Bounhar, Y, Roucou, X, LeBlanc, AC. Prion protein prevents Bax-mediated cell death in the absence of other Bcl-2 family members in Saccharomyces cerevisiae. FEMS Yeast Research. 2006;6(8):1204-12.Google Scholar
224. Diarra-Mehrpour, M, Arrabal, S, Jalil, A, Pinson, X, Gaudin, C, Pietu, G, et al. Prion protein prevents human breast carcinoma cell line from tumor necrosis factor alpha-induced cell death. Cancer Res. 2004;64(2):719-27.Google Scholar
225. Bueler, H, Fischer, M, Lang, Y, Bluethmann, H, Lipp, HP, DeArmond, SJ, et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature. 1992;356(6370): 577-82.Google Scholar
226. Manson, JC, Clarke, AR, Hooper, ML, Aitchison, L, McConnell, I, Hope, J. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol. 1994;8(2-3):121-7.Google Scholar
227. Bueler, H, Raeber, A, Sailer, A, Fischer, M, Aguzzi, A, Weissmann, C. High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol Med. 1994;1(1):19-30.Google Scholar
228. Nishida, N, Tremblay, P, Sugimoto, T, Shigematsu, K, Shirabe, S, Petromilli, C, et al. Amouse prion protein transgene rescues mice deficient for the prion protein gene from purkinje cell degeneration and demyelination. Lab Invest. 1999;79(6):689-97.Google Scholar
229. Brown, DR, Nicholas, RS, Canevari, L. Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J Neurosci Res. 2002;67(2):211-24.Google Scholar
230. Sakaguchi, S, Katamine, S, Nishida, N, Moriuchi, R, Shigematsu, K, Sugimoto, T, et al. Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature. 1996;380(6574):528-31.CrossRefGoogle ScholarPubMed
231. Moore, RC, Lee, IY, Silverman, GL, Harrison, PM, Strome, R, Heinrich, C, et al. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol. 1999;292(4):797-817.Google Scholar
232. Moore, RC, Mastrangelo, P, Bouzamondo, E, Heinrich, C, Legname, G, Prusiner, SB, et al. Doppel-induced cerebellar degeneration in transgenic mice. Proc Natl Acad Sci USA. 2001;98(26): 15288-93.Google Scholar
233. Flechsig, E, Hegyi, I, Leimeroth, R, Zuniga, A, Rossi, D, Cozzio, A, et al. Expression of truncated PrP targeted to Purkinje cells of PrP knockout mice causes Purkinje cell death and ataxia. EMBO J. 2003;22(12):3095-101.Google Scholar
234. Scott, M, Foster, D, Mirenda, C, Serban, D, Coufal, F, Walchli, M, et al. Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell. 1989;59(5):847-57.Google Scholar
235. Prusiner, SB, Scott, M, Foster, D, Pan, KM, Groth, D, Mirenda, C, et al. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell. 1990;63(4): 673-86.Google Scholar
236. Telling, GC. Prion protein genes and prion diseases: studies in transgenic mice. Neuropathol Appl Neurobiol. 2000;26(3):209-20.Google Scholar
237. Westaway, D, DeArmond, SJ, Cayetano-Canlas, J, Groth, D, Foster, D, Yang, SL, et al. Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell. 1994;76(1): 117-29.Google Scholar
238. Paitel, E, Alves da Costa, C, Vilette, D, Grassi, J, Checler, F. Overexpression of PrPc triggers caspase 3 activation: potentiation by proteasome inhibitors and blockade by anti-PrP antibodies. J Neurochem. 2002;83(5):1208-14.Google Scholar
239. Tateishi, J, Kitamoto, T, Hoque, MZ, Furukawa, H. Experimental transmission of Creutzfeldt-Jakob disease and related diseases to rodents. Neurology. 1996;46(2):532-7.Google Scholar
240. Hsiao, K, Scott, M, Foster, D, DeArmond, SJ, Groth, D, Serban, H, et al. Spontaneous neurodegeneration in transgenic mice with prion protein codon 101 proline—leucine substitution. Ann N Y Acad Sci. 1991;640:166-70.Google Scholar
241. Shmerling, D, Hegyi, I, Fischer, M, Blattler, T, Brandner, S, Gotz, J, et al. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell. 1998;93(2):203-14.Google Scholar
242. Cohen, E, Taraboulos, A. Scrapie-like prion protein accumulates in aggresomes of cyclosporin A-treated cells. EMBO J. 2003;22(3):404-17.Google Scholar
243. Roucou, X, Gains, M, LeBlanc, AC. Neuroprotective functions of prion protein. J Neurosci Res. 2004;75(2):153-61.Google Scholar
244. Zuscik, MJ, Sands, S, Ross, SA, Waugh, DJ, Gaivin, RJ, Morilak, D, et al. Overexpression of the alpha 1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nat Med. 2000;6(12):1388-94.Google Scholar
245. Robertson, J, Kriz, J, Nguyen, MD, Julien, JP. Pathways to motor neuron degeneration in transgenic mouse models. Biochimie. 2002;84(11):1151-60.Google Scholar
246. Festoff, BW, D’Andrea, MR, Citron, BA, Salcedo, RM, Smirnova, IV, Andrade-Gordon, P. Motor neuron cell death in wobbler mutant mice follows overexpression of the G-protein-coupled, protease-activated receptor for thrombin. Mol Med. 2000;6(5):410-29.Google Scholar
247. Shmerling, D, Hegyi, I, Fischer, M, Blattler, T, Brandner, S, Gotz, J, et al. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell. 1998;93(2):203-14.Google Scholar
248. Hegde, R, Mastrianni, J, Scott, M, Defea, K, Tremblay, P, Torchia, M, et al. A transmembrane form of the prion protein in neurodegenerative diseases. Science. 1998;279:827-34.Google Scholar
249. Hsiao, K, Scott, M, Foster, D, DeArmond, SJ, Groth, D, Serban, H, et al. Spontaneous neurodegeneration in transgenic mice with prion protein codon 101 proline—leucine substitution. Ann N Y Acad Sci. 1991;640(166):166-70.Google Scholar
250. Walmsley, AR, Zeng, F, Hooper, NM. Membrane topology influences N-glycosylation of the prion protein. Zuscik, MJ, Sands, S, Ross, SAJ. 2001;20(4):703-12.Google Scholar
251. Zanusso, G, Petersen, RB, Jin, T, Jing, Y, Kanoush, R, Ferrari, S, et al. Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. J Biol Chem. 1999;274(33):23396-404.Google Scholar
252. Hay, B, Barry, RA, Lieberburg, I, Prusiner, SB, Lingappa, VR. Biogenesis and transmembrane orientation of the cellular isoform of the scrapie prion protein erratum in: Mol Cell Biol. 1987; May 7(5):2035. Mol Cell Biol. 1987; 7(2):914-20.Google Scholar
253. Lopez, CD, Yost, CS, Prusiner, SB, Myers, RM, Lingappa, VR. Unusual topogenic sequence directs prion protein biogenesis. Science. 1990;248(4952):226-9.Google Scholar