Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T03:37:13.141Z Has data issue: false hasContentIssue false

The Expression of FOXJ1 in Neurogenesis after Transient Focal Cerebral Ischemia

Published online by Cambridge University Press:  23 September 2014

Yabo Huang
Affiliation:
Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, China
Zheng Xu
Affiliation:
Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, China
Jie Cao
Affiliation:
Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, China
Haibo Cao
Affiliation:
Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, China
Shiming Zhang*
Affiliation:
Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, China
*
Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China. Email: zhang.shiming@yahoo.cn.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective and Background:

FOXJ1 is a member of the Forkhead/winged-helix (Fox) family of transcription factors, which is required for the differentiation of the cells acting as adult neural stem cells which participate in neurogenesis and give rise to neurons, astrocytes, oligodendrocytes. The expression pattern of FOXJ1 in the brain after cerebral ischemia has so far not been described. In the current study, we investigated the expression pattern of FOXJ1 in the rat brain after cerebral ischemia by animal model.

Methods:

We performed a middle cerebral artery occlusion (MCAO) model in adult rats and investigated the expression of FOXJ1 in the brain by Western blotting and immunochemistry; double immunofluorescence staining was used to analyze FOXJ1's co-expression with Ki67.

Results:

Western blot analysis showed that the expression of FOXJ1 was lower than normal and sham-operated brain after cerebral ischemia, but the level of FOXJ1 gradually increased from Day 1 to Day 14. Immuohistochemical staining suggested that the immunostaining of FOXJ1 deposited strongly in the ipsilateral and contralateral hemisphere in the cortical penumbra (CP). There was no FOXJ1 expression in the ischemic core (IC). The positive cells in the cortical penumbra might migrat to the ischemic core. In addition, double immunofluorescence staining revealed that FOXJ1 was co-expressed with mAP-2 and gFAP, and Ki67 had the colocalization with NeuN, GFAP, and FOXJ1.

Conclusions:

All our findings suggest that FOXJ1 plays an important role on neuronal production and neurogenesis in the adult brain after cerebral ischemia.

Résumé:

Résumé:Objectif et contexte:

FOXJ1 est un membre de la famille de facteurs de transcription Forkhead/winged-helix (Fox). Il est requis pour la différenciation des cellules agissant comme cellules souches nerveuses adultes qui participent à la neurogenèse et donnent naissance à des neurones, des astrocytes et des oligodendrocytes. l'expression de FOXJ1 dans le cerveau suite à un accès ischémique focal transitoire n'a pas été décrite à ce jour. Dans cette étude, nous avons exploré l'expression de FOXJ1 dans un modèle animal, le cerveau de rat, suite à une ischémie cérébrale.

Méthode:

Nous avons effectué une occlusion de l'artère cérébrale moyenne chez des rats adultes et nous avons examiné l'expression de FOXJ1 dans le cerveau par buvardage Western et immunohistochimie. Nous avons utilisé le double marquage par immunofluorescence pour analyser la coexpression de FOXJ1 et de Ki67.

Résultats:

l'analyse par buvardage Western a montré que l'expression de FOXJ1 était plus faible dans le cerveau de rat qui avait subi une ischémie cérébrale que dans le cerveau normal ou le cerveau qui avait subi une intervention factice. Cependant, le niveau de FOXJ1 augmentait graduellement du jour l au jour 14 après l'ischémie. La coloration immunohistochimique de FOXJ1 était intense dans la zone de pénombre corticale de l'hémisphère ipsi et contralatéral. il n'y avait pas d'expression de FOXJ1 dans le centre de la zone ischémique. Il est possible que les cellules positives dans la zone de pénombre corticale puissent migrer vers le centre de la zone ischémique. De plus, une double coloration par immunofluorescence a montré une coexpression de FOXJ1 et mAP-2 et gFAP, et une colocalisation de Ki67 et de NeuN, gFAP et FOXJ1.

Conclusions:

Ces observations sont en faveur d'un rôle important de FOXJ1 dans la production neuronale et la neurogenèse dans le cerveau adulte à la suite d'une ischémie cérébrale.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Donnan, GA, Fisher, M, Macleod, M, Davis, SM. Stroke. Lancet. 2008 May 10;371(9624):1612–23.CrossRefGoogle ScholarPubMed
2. Pekny, M, Nilsson, M. Astrocyte activation and reactive gliosis. Glia. 2005 Jun;50(4):427–34.CrossRefGoogle ScholarPubMed
3. Wang, Q, Tang, XN, Yenari, MA. The inflammatory response in stroke. J Neuroimmunol. 2007 Mar;184(1-2):5368.CrossRefGoogle ScholarPubMed
4. del Zoppo, GJ, Milner, R, Mabuchi, T, et al. Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke. 2007 Feb;38(2 Suppl):646–51.CrossRefGoogle ScholarPubMed
5. Sofroniew, MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009 Dec;32(12):638–47.CrossRefGoogle ScholarPubMed
6. Gage, FH. Mammalian neural stem cells. Science. 2000 Feb 25;287 (5457):1433–8.CrossRefGoogle ScholarPubMed
7. Lichtenwalner, RJ, Parent, JM. Adult neurogenesis and the ischemic forebrain. J Cereb Blood Flow Metab. 2006 Jan;26(1):120.CrossRefGoogle ScholarPubMed
8. Clevidence, DE, Overdier, DG, Tao, W, et al. Identification of nine tissue-specific transcription factors of the hepatocyte nuclear factor 3/forkhead DNA-binding-domain family. Proc Natl Acad Sci USA. 1993 May 1;90(9):3948–52.CrossRefGoogle ScholarPubMed
9. Hackett, BP, Brody, SL, Liang, M, Zeitz, ID, Bruns, LA, Gitlin, JD. Primary structure of hepatocyte nuclear factor/forkhead homologue 4 and characterization of gene expression in the developing respiratory and reproductive epithelium. Proc Natl Acad Sci USA. 1995 May 9;92(10):4249–53.CrossRefGoogle ScholarPubMed
10. Brody, SL, Yan, XH, Wuerffel, MK, Song, SK, Shapiro, SD. Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am J Respir Cell Mol Biol. 2000 Jul;23(1):4551.CrossRefGoogle ScholarPubMed
11. Yu, X, Ng, CP, Habacher, H, Roy, S. Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet. 2008 Dec;40(12):1445–53.CrossRefGoogle ScholarPubMed
12. Stubbs, JL, Oishi, I, Izpisua Belmonte, JC, Kintner, C. The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet. 2008 Dec;40(12):1454–60.CrossRefGoogle ScholarPubMed
13. Spassky, N, Merkle, FT, Flames, N, Tramontin, AD, Garcia-Verdugo, JM, Alvarez-Buylla, A. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci. 2005 Jan 5;25(1):10–8.CrossRefGoogle ScholarPubMed
14. Sawamoto, K, Wichterle, H, Gonzalez-Perez, O, et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science. 2006 Feb 3;311(5761):629–32.CrossRefGoogle ScholarPubMed
15. Cui, G, Yu, Z, Li, Z, et al. Increased expression of Foxj1 after traumatic brain injury. J Mol Neurosci. 2011 Oct;45(2):145–53.CrossRefGoogle ScholarPubMed
16. Meletis, K, Barnabe-Heider, F, Carlen, M, et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PloS Biol. 2008 Jul 22;6(7):e182.CrossRefGoogle ScholarPubMed
17. Carlen, M, Meletis, K, Goritz, C, et al. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci. 2009 Mar;12(3):259–67.CrossRefGoogle ScholarPubMed
18. Jacquet, BV, Salinas-Mondragon, R, Liang, H, et al. FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development. 2009 Dec;136(23):4021–31.CrossRefGoogle Scholar
19. Jacquet, BV, Muthusamy, N, Sommerville, LJ, et al. Specification of a Foxj1-dependent lineage in the forebrain is required for embryonic-to-postnatal transition of neurogenesis in the olfactory bulb. J Neurosci. 2011 Jun 22;31(25):9368–82.CrossRefGoogle ScholarPubMed
20. Belayev, L, Alonso, OF, Busto, R, Zhao, W, Ginsberg, MD. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke. 1996 Sep;27(9):1616–22; discussion 23.CrossRefGoogle ScholarPubMed
21. Longa, EZ, Weinstein, PR, Carlson, S, Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989 Jan;20(1):8491.CrossRefGoogle ScholarPubMed
22. Takemura, S, Kayama, T, Kuge, A, et al. Correlation between copper/zinc superoxide dismutase and the proliferation of neural stem cells in aging and following focal cerebral ischemia. J Neurosurg. 2006 Jan;104(1):129–36.CrossRefGoogle ScholarPubMed
23. Bonita, R, Mendis, S, Truelsen, T, Bogousslavsky, J, Toole, J, Yatsu, F. The global stroke initiative. Lancet Neurol. 2004 Jul;3(7):391–3.CrossRefGoogle ScholarPubMed
24. Jin, K, Minami, M, Lan, JQ, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA. 2001 Apr 10;98(8):4710–5.CrossRefGoogle ScholarPubMed
25. Arvidsson, A, Collin, T, Kirik, D, Kokaia, Z, Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002 Sep;8(9):963–70.CrossRefGoogle ScholarPubMed
26. Zhang, R, Wang, Y, Zhang, L, et al. Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke. 2002 Nov;33(11):2675–80.CrossRefGoogle ScholarPubMed
27. Nakatomi, H, Kuriu, T, Okabe, S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002 Aug 23;110(4):429–41.CrossRefGoogle ScholarPubMed
28. Bendel, O, Bueters, T, von Euler, M, Ove Ogren, S, Sandin, J, von Euler, G. Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory. J Cereb Blood Flow Metab. 2005 Dec;25(12):1586–95.CrossRefGoogle ScholarPubMed
29. Blatt, EN, Yan, XH, Wuerffel, MK, Hamilos, DL, Brody, SL. Forkhead transcription factor HFH-4 expression is temporally related to ciliogenesis. Am J Respir Cell Mol Biol. 1999 Aug;21(2):168–76.CrossRefGoogle ScholarPubMed
30. Tichelaar, JW, Lim, L, Costa, RH, Whitsett, JA. HNF-3/forkhead homologue-4 influences lung morphogenesis and respiratory epithelial cell differentiation in vivo. Dev Biol. 1999 Sep 15;213 (2):405–17.CrossRefGoogle ScholarPubMed
31. Zhang, RL, Zhang, ZG, Wang, Y, et al. Stroke induces ependymal cell transformation into radial glia in the subventricular zone of the adult rodent brain. J Cereb Blood Flow Metab. 2007 Jun;27(6): 1201–12.CrossRefGoogle ScholarPubMed
32. Parent, JM, Yu, TW, Leibowitz, RT, Geschwind, DH, Sloviter, RS, Lowenstein, DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997 May 15;17(10):3727–38.CrossRefGoogle ScholarPubMed
33. Ahmed, S, Reynolds, BA, Weiss, S. BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci. 1995 Aug;15(8):5765–78.CrossRefGoogle Scholar
34. Jin, K, Mao, XO, Sun, Y, Xie, L, Greenberg, DA. Stem cell factor stimulates neurogenesis in vitro and in vivo. J Clin Invest. 2002 Aug;110(3):311–9.CrossRefGoogle ScholarPubMed
35. Takasawa, K, Kitagawa, K, Yagita, Y, et al. Increased proliferation of neural progenitor cells but reduced survival of newborn cells in the contralateral hippocampus after focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2002 Mar;22(3):299307.CrossRefGoogle ScholarPubMed
36. Haas, S, Weidner, N, Winkler, J. Adult stem cell therapy in stroke. Curr Opin Neurol. 2005 Feb;18(1):5964.CrossRefGoogle ScholarPubMed
37. Parent, JM. Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist. 2003 Aug;9(4):261–72.CrossRefGoogle ScholarPubMed
38. Jin, L, Sliz, P, Chen, L, et al. An asymmetric NFAt1 dimer on a pseudo-palindromic kappa B-like DNA site. Nat Struct Biol. 2003 Oct;10(10):807–11.CrossRefGoogle ScholarPubMed