Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-26T06:34:33.788Z Has data issue: false hasContentIssue false

Friedreich's Ataxia 1980 An Overview of the Physiopathology

Published online by Cambridge University Press:  18 September 2015

André Barbeau*
Affiliation:
Department of Neurobiology, Clinical Research Institute of Montreal
*
Clinical Research Institute of Montreal, 110 Pine West Ave., Montreal, Quebec, Canada H2W 1R7
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Phase three of the Quebec Cooperative Study of Friedreich's Ataxia was devoted to an understanding of the physiopathology of individual symptoms on the basis of previously discovered biochemical leads. The present paper attempts to pull these results together by presenting, as a hypothesis, a unifying scheme of possible interactions and relationships. The central core of this hypothesis is the demonstration in Friedreich's ataxia of a state of mitochondrial energy deprivation. This is indirectly responsible for such associated and important symptoms as muscle weakness, dying-back neuropathy, scoliosis and hypertrophic cardiomyopathy. Secondarily, and possibly as an independent but linkedevent, the entry of glucose into cells and pyruvate oxidation, are slowed down, favoring the development of diabetes. As a consequence, tissue concentrations of glutamic acid and aspartic acid are decreased, particularly in more vulnerable areas such as the cerebellum, brain stem and dorsal root ganglia. This tissue deficiency in putative excitatory neurotransmitters is directly responsible for the symptom of ataxia. This conclusion is reinforced by the correction of the ataxia in glutaexperimental animals, by the intraventricular injection of the same amino acids, and not by the injection of other stimulants of motricity. The observed mitochondrial energy deprivation could be the metabolic consequence of major changes in the linoleic acid (18:2) composition of inner mitochondrial membrane phospholipids, such as cardiolipin. Such decreases in membrane 18:2 could be the result of interference with the normal incorporation of this fatty acid to lipoproteins and/or cell membranes. It is at this level that the search for the specific enzyme defect in Friedreich's ataxia is continuing.

Type
Quebec Cooperative Study of Friedreich's Ataxia
Copyright
Copyright © Canadian Neurological Sciences Federation 1980

References

REFERENCES

Barbeau, A., (1975). Preliminary studies on pyruvate metabolism in Friedreich’s ataxia. Trans. Am. Neurol. Assoc. 100, 164165.Google ScholarPubMed
Barbeau, A., (1976). Friedreich’s Ataxia 1976 — An Overview. Can. J. Neurol. Sci. 3. 389397.CrossRefGoogle ScholarPubMed
Barbeau, A., (1978a). Friedreich’s Ataxia 1978 — An Overview. Can. J. Neurol. Sci. 5, 161165.CrossRefGoogle ScholarPubMed
Barbeau, A., (1978b). Emerging treatments: Replacement therapy with choline or lecithin in neurological diseases. Can. J. Neurol. Sci. 5. 157160.CrossRefGoogle ScholarPubMed
Barbeau, A. (1978c). Lecithin in neurological diseases. New Engl. J. Med. 299, 200201.Google Scholar
Barbeau, A., (1979). Friedreich’s Ataxia 1979 — An Overview. Can. J. Neurol. Sci. 6, 311319.Google ScholarPubMed
Barbeau, A., (1980). Distribution of Ataxia in Quebec. In: Spinocerebellar Degenerations. Ed., 1. Sobue, Univ. Tokyo Press, pp. 121141.Google Scholar
Barbeau, A., Butterworth, R.F., Ngo, T., Breton, G., Melançon, S., Shapcott, D., Geoffroy, G., and Lemieux, B. (1976). Pyruvate metabolism in Friedreich’s Ataxia. Can. J. Neurol. Sci. 3, 379388.CrossRefGoogle ScholarPubMed
Bergström, S., and Samuelson, B., (1965). Prostaglandins. Ann. Rev. Biochem. 34, 101108.CrossRefGoogle Scholar
Blass, J.P., (1979). Disorders of pyruvate metabolism. Neurology 29, 280286.CrossRefGoogle ScholarPubMed
Blass, J.P., Kark, R.A.P., and Menon, N.K., (1976). Low activities of the pyruvate and oxoglutarate dehydrogenase complexes in five patients with Friedreich’s ataxia. New Engl. J. Med. 295, 6267.CrossRefGoogle ScholarPubMed
Blattel, R.A. (1979). Use of choline in the treatment of ataxia associated with multiple sclerosis. Can. Med. Ass. J. 121, 1568.Google ScholarPubMed
Blomstrand, R., and Svensson, L., (1974). Studies on phospholipids with particular reference to cardiolipin of rat heart after feeding Rapeseed oil. Lipids 9, 771779.CrossRefGoogle ScholarPubMed
Bouchard, J.P., Barbeau, A., Bouchard, R., and Bouchard, R.W., (1978). Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay. Can. J. Neurol. Sci. 5. 6169.CrossRefGoogle ScholarPubMed
Butterfield, D.A., Leung, P.K., Markesbery, W.R., and Barbeau, A., (1979). Evidence for an altered physical state of membrane proteins in erythrocytes in Friedreich’s Ataxia. Can. J. Neurol. Sci. 6, 295298.CrossRefGoogle ScholarPubMed
Butterworth, R.F., Hamel, E., Landreville, F., and Barbeau, A., (1978). Cerebellar ataxia produced by 3-acetyl pyridine in rat. Can. J. Neurol. Sci. 5, 131133.CrossRefGoogle ScholarPubMed
Butterworth, R.F., Hamel, E., Landreville, F., and Barbeau, A., (1979). Amino acid changes in thiamine-deficient encephalopathy: some implications for the pathogenesis of Friedreich’s Ataxia. Can. J. Neurol. Sci. 6, 217222.CrossRefGoogle ScholarPubMed
Carreau, J.P., Lapous, D. and Poulin, J., (1975). Un dérivé vraisemblablement essentiel de l’acide linoléique: l’acide lipoïque, coenzyme universel de l’oxydation des acides cétoniques. C.R. Acad. Se. Paris 281, 941944.Google Scholar
Carreau, J.P., Lapous, D., and Poulin, J., (1977). Signification des acides gras essentiels dans le métabolisme intermédiaire. Hypothèses sur la synthèse de l’acide lipoïque. Biochimie 59, 487496.CrossRefGoogle Scholar
Cavanagh, J.B., (1964). The significance of the “dying-back” process in experimental and human neurological disease. Int. Rev. Exp. Pathol. 3, 219267.Google ScholarPubMed
Chazot, G., Sassolas, G., Kopp, N., Trillet, M., and Schott, B., (1979). Adrénomyéloneuropathie: forme adulte d’adrénoleucodystrophie — Paraparésie spastique et insuffisance surrénale chronique — a propos de 3 cas. Rev. Neurol. (Paris) 135, 211220.Google Scholar
Comte, J., Gautheron, D., Peyroux, F., and Michel, G., (1971). Lipid composition and endogenous respiration of pig heart mitochondria. Lipids 6, 882888.CrossRefGoogle ScholarPubMed
Comte, J., Maisterrena, B., and Gautheron, D.C., (1976). Lipid composition and protein profiles of outer and inner membranes from pig heart mitochondria — comparison with microsomes. Biochim. Biophys. Acta 419, 271284.CrossRefGoogle ScholarPubMed
Cote, M., Bureau, M., Leger, C, Martin, J., Gattiker, H., Cimon, M., LAROSE, A., and Lemieux, B., (1979). Evolution of cardiopulmonary involvement in Friedreich’s Ataxia. Can. J. Neurol. Sci. 6, 151157.CrossRefGoogle ScholarPubMed
Cote, M., Davignon, A., Elias, G., Solignac, A., Geoffroy, G., Lemieux, B., and Barbeau, A., (1976a). Hemodynamic findings in Friedreich’s Ataxia. Can. J. Neurol. Sci. 3, 333336.CrossRefGoogle ScholarPubMed
Cote, M., Davignon, A., Pecko-Drouin, K., Solignac, A., Geoffroy, G., Lemieux, B., and Barbeau, A., (1976b). Cardiological signs and symptoms in Friedreich’s Ataxia. Can. J. Neurol. Sci. 3, 319321.CrossRefGoogle ScholarPubMed
Davidson, J.B., and Stanacev, N.Z., (1971). Biosynthesis of cardiolipin in mitochondria isolated from guinea pig liver. Biochem. Biophys. Res. Comm. 42, 11911199.CrossRefGoogle ScholarPubMed
Davignon, J., Huang, Y.S., Wolf, J.P., and Barbeau, A.. (1979). Fatty acid profile of major lipid classes in plasma lipoproteins of patients with Friedreich’s ataxia — Demonstration of a low linoleic acid content most evident in the cholesterol-Ester fraction. Can. J. Neurol. Sci. 6, 275283.CrossRefGoogle ScholarPubMed
De Falco, F.A., Mansi, D., Ventola, F., Filla, A., and Campanella, G., (1979). Proposta di une scheda di relevamento clinico delle eredoatassie spino-cerebellari. Acta Neurol, Quaderno 39. 103109.Google Scholar
Dodd, G.H., (1973). The interaction of glutamate dehydrogenase and Malate dehydrogenase with phospholipid membranes. Eur. J. Biochem. 33, 418427.CrossRefGoogle ScholarPubMed
Draper, P., Huang, Y.S., Shapcott, D., Lemieux, B., Brennan, M., Barbeau, A.. and Davignon, J., (1979a). Erythrocyte membrane lipids in Friedreich’s Ataxia. Can. J. Neurol. Sci. 6, 291294.CrossRefGoogle ScholarPubMed
Draper, R., Shapcott, D., Larose, A., Stankova, J., Levesque, F., and Lemieux, B., (1979b). Glucose Tolerance and Erythrocyte insulin receptors in Friedreich’s Ataxia. Can. J. Neurol. Sci. 6. 233239.CrossRefGoogle ScholarPubMed
Evans, O.B., (1980). Muscle Pyruvate Oxidation in Spinocerebellar Degenerations. Ann. Neurol. 8, 129.Google Scholar
Field, E.J.. and Joyce, G.. (1979). Origin of red-cell membrane differences in multiple sclerosis. Lancet 2, 10121013.CrossRefGoogle ScholarPubMed
Filla, A., Butterworth, R.F., and Barbeau, A., (1979). Pilot studies on membranes and some transport mechanisms in Friedreich’s Ataxia. Can. J. Neurol. Sci. 6, 285289.CrossRefGoogle ScholarPubMed
Filla, A., Butterworth, R.F., Geoffroy, G., Lemieux, B., and Barbeau, A., (1978). Serum and platelet lipoamide dehydrogenase in Friedreich’s Ataxia. Can. J. Neurol. Sci. 5, 11ll14.CrossRefGoogle ScholarPubMed
Gattiker, H.F., Davignon, A., Bozio, A., Batlle-Diaz, J., Geoffroy, G., Lemieux, J.B., and Barbeau, A., (1976). Echocardiographic findings in Friedreich’s Ataxia. Can. J. Neurol. Sci. 3, 329332.CrossRefGoogle ScholarPubMed
Geoffroy, G., Barbeau, A., Breton, G., Lemieux, B., Aube, M., Leger, C., and Bouchard, J.B., (1976). Clinical description and roentgenologic evaluation of patients with Friedreich’s Ataxia. Can. J. Neurol. Sci. 3, 279286.CrossRefGoogle ScholarPubMed
Gibson, G E., JOPE, R., and BLASS, J.P., (1975). Decreased synthesis of acetyl-choline accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem. J. 148, 1723.CrossRefGoogle Scholar
Godinot, C., (1973). Nature and possible functions of association between glutamate dehydrogenase and cardiolipin. Biochemistry 12, 40294034.CrossRefGoogle ScholarPubMed
Griffiths, D.E. and Hyams, R.L. (1977). Oxidative phosphorylation: A role for lipoic acid and unsaturated fatty acids. Biochem. Soc. Trans. 5, 207208.CrossRefGoogle Scholar
Griffiths, D.E., Cain, K. and Hyams, R.L. (1977). Oxidative phosphorylation: A new biological function for lipoic acid. Biochem. Soc. Trans. 5, 205207.CrossRefGoogle ScholarPubMed
Haslam, J.M. (1971). The effects of depletion of unsaturated fatty acids on the energy-dependent reactions of least mitochondria. Biochem. J. 123, 6p–7p.CrossRefGoogle Scholar
Hirsch, M.J. and Wurtman, R.J. (1978). Lecithin consumption increases acetylcholine concentrations in rat brain and adrenol gland. Science 202, 223225.CrossRefGoogle Scholar
Horwitt, M.K., Harvey, C.C. and Century, B. (1959). Effect of Dietary fats on fatty acid composition of human erythrocytes and chick cerebella. Science 131, 917918.CrossRefGoogle Scholar
Hostetler, K.Y. and Van den BOSCH, H. (1972). Subcellular and submitochondrial localization of the biosynthesis of cardiolipin and related phospholipids in rat liver. Biochim. Biophys. Acta 260, 380386.CrossRefGoogle ScholarPubMed
Huang, Y.S., Nestruck, A.C., Barbeau, A., Bouchard, J.P. and Davignon, J. (1978). Plasma lipids and lipoproteins in Friedreich’s Ataxia and familial spastic ataxia – Evidence for an abnormal composition of high density lipoproteins. Can. J. Neurol. Sci. 5, 149156.CrossRefGoogle ScholarPubMed
Hughes, T.J., Brownell, B. and Hewer, R.L. (1968). The peripheral sensory pathway in Friedreich’s Ataxia. An examination by light and electron-microscopy of the posterior nerve roots, sensory nerves in cases of Friedreich’s Ataxia. Brain 91, 803818.CrossRefGoogle ScholarPubMed
Huxtable, R.J. (1978). Cardiac Pharmacology and cardiomyopathy in Friedreich’s Ataxia. Can. J. Neurol. Sci. 5, 8391.CrossRefGoogle ScholarPubMed
Huxtable, R.J., Azari, J., Reisine, T., Johnson, P., Yamamura, H.I. and Barbeau, A. (1979). Regional distribution of Amino acids in Friedreich’s Ataxia brains. Can. J. Neurol. Sci. 6, 255258.CrossRefGoogle ScholarPubMed
Igarashi, M., Schlaumberg, H.H., Powers, J., Kishimoto, Y., Kolondy, E. and Suzuki, K. (1976). Fatty acid abnormality in adrenoleukodystrophy. J. Neurochem. 26, 851860.CrossRefGoogle ScholarPubMed
Ioannou, P.V. and Golding, B.T. (1979). Cardiolipins: their chemistry and biochemistry. Progr. Lipid Res. 17, 279318.CrossRefGoogle ScholarPubMed
Joffe, B.I., Segal, I. and Cooper, W. (1968). Evolution of diabetes mellitus in cases of Friedreich’s Ataxia. J. Neurol. Neurosurg. and Psychiat. 36, 484493.CrossRefGoogle Scholar
JoliCoeur, F.B., Rondeau, D.B., Hamel, E., Butterworth, R.F. and Barbeau, A. (1979). Measurement of ataxia and related neurological signs in the laboratory rat. Can. J. Neurol. Sci. 6, 209215.CrossRefGoogle ScholarPubMed
Julliard, J. and Gautheron, D.C. (1972). Regulatory effects of mitochondrial lipids on glutamate dehydrogenase NAD(P). FEBS Letters 25, 343345.Google ScholarPubMed
Kark, R.A.P., Blass, J.P. and Engel, W.K. (1974). Pyruvate oxidation in neuromuscular diseases — Evidence for a genetic defect in two families with the clinical syndrome of Friedreich’s Ataxia. Neurology 24, 964971.CrossRefGoogle ScholarPubMed
Kark, R.A.P., Blass, J.P. and Spence, M.A. (1977). Physostigmine in familial ataxias. Neurology 27, 70–372.CrossRefGoogle ScholarPubMed
Kark, R.A.P. and Rodriguez-Budelli, M. (1979a). Pyruvate dehydrogenase deficiency in spinocerebellar degenerations. Neurology 29, 126131.CrossRefGoogle ScholarPubMed
Kark, R.A.P. and Rodriguez-BUDELLI, M.M. (1979b). Clinical correlations of partial deficiency of lipoamide dehydrogenase. Neurology 29, 10061013.CrossRefGoogle ScholarPubMed
Kark, P., Rodriguez-BUDELLI, M. and Becker, D.M. (1979). Methodology in evaluating pyruvate oxidation. Ann. Neurol. 5, 595596.CrossRefGoogle ScholarPubMed
Kark, R.A.P., Rodriguez-BUDELLI, M., Perlman, S., Guelley, W.F. and Torok, K. (1980). Preclinical diagnosis and carrier detection in ataxia associated with abnormalities of lipoamide dehydrogenase. Neurology 30, 502508.CrossRefGoogle ScholarPubMed
Landriscina, C, Megli, F.M. and Quagli ARI ELLO, E. (1976). Turnover of fatty acids in rat liver cardiolipin: comparison with other mitochondrial phospholipids. Lipids 11, 6165.CrossRefGoogle ScholarPubMed
Legg, N.J. (1978). Oral choline in cerebellar ataxia. Brit. Med. J. 2, 14031404.CrossRefGoogle ScholarPubMed
Lemieux, B., Barbeau, A., Beroniade, V., Shapcott, D., Breton, G.Geoffroy, G. and Melançon, S. (1976). Amino acid metabolism in Friedreich’s Ataxia. Can. J. Neurol. Sci. 3, 373378.CrossRefGoogle ScholarPubMed
Livingstone, LB. and Mastaglia, F.L. (1979). Choline chloride in the treatment of ataxia. Brit. Med. J. 2, 939.CrossRefGoogle ScholarPubMed
Malo, S.. Latour, Y., Cote, M., Geoffroy, G., Lemieux, B. and Barbeau, A. (1976). Electrocardiographic and vectocardiographic findings in Friedreich’s Ataxia. Can. J. Neurol. Sci. 3, 323328.CrossRefGoogle ScholarPubMed
Marnett, L.J. and Wilcox, C.L. (1977). Stimulation of prostaglandin biosynthesis by lipoic acid. Biochim. Biophys. Acta 487, 222230.CrossRefGoogle ScholarPubMed
Mcbride, N.J., Rea, M.A. and Nadi, N.S. (1978). Effects of 3-acetylpyridine on the levels of several amino-acids in different CNS regions of the rat. Neurochemical Research 3, 793801.CrossRefGoogle ScholarPubMed
Messer, A. and Gordon, D. (1979). Changes in whole tissue biosynthesis of γ-aminobutyric acid (GABA) in basal ganglia of the dystonia (dtalb) mouse. Life Sci. 25, 22172221.CrossRefGoogle ScholarPubMed
Messer, A. and Strominger, N.L. (1980) . An allele of the mouse Mutant dystonia musculorum exhibits lesions in red nucleus and striatum. Neuroscience 5, 543549.CrossRefGoogle ScholarPubMed
Melançon, S.B., Potier, M., Dallaire, L., Fontaine, G., Grenier, B., Lemieux, B.Geoffroy, G. and Barbeau, A. (1978a). Lipoamide dehydrogenase in Friedreich’s Ataxia fibroblasts. Can. J. Neurol. Sci. 5, 115118.CrossRefGoogle ScholarPubMed
Melançon, S.B., Dallaire, L. and Potier, M. (1978b). Lipoamide dehydrogenase in cultured human skin fibroblasts. Clin. Chimica Acta 87, 2934.CrossRefGoogle ScholarPubMed
Melançon, S.B., Potier, M.Dallaire, L., Rollin, P., Fontaine, G. and Grenier, B. (1979). Pyruvate dehydroge-nage, lipoamide dehydrogenase and citrate synthase activity in fibroblasts from patients with Friedreich’s and Charlevoix-Saguenay Ataxia. Can. J. Neurol. Sci. 6, 241242.CrossRefGoogle ScholarPubMed
Nadi, N.S., Kanter, D.Mcbride, W.J. and Aprison, M.H. (1977). Effects of 3-acetylpyridine on several putative neuro-transmitter amino acids in the cerebellum and medulla of the rat. J. Neurochem. 28, 661662.CrossRefGoogle Scholar
Ngo, T.T. and Barbeau, A. (1978). Lipoamide dehydrogenase regulation in rat brain. Can. J. Neurol. Sci. 5. 105109.CrossRefGoogle ScholarPubMed
O’NEILL, B.P., Moser, H.W. and Marmion, L.C. (1980). The adrenoleukomyeloneuro-pathy (ALMN) complex: Elevated C2(, Fatty acid in cultured skin fibroblasts and correlation with disease expression in three generations of a kindred. Neurology 30, 352.Google Scholar
Oppenheimer, D.R. (1979). Brain lesions in Friedreich’s Ataxia. Can. J. Neurol. Sci. 6. 173176.CrossRefGoogle ScholarPubMed
Pasantes-Morales, H. and Gamboa, A. (1980). Taurine effects on calcium transport in synaptosomes. Am. Soc. Neurochem. Proc. 2, 193.Google Scholar
Perlman, S.L., Kark, R.A.P.. Schlecter, B., Budelli, M R. and Youkeles, L. (1980). Preliminary studies of oral physostigmine in the long-term management of Inherited ataxias. Neurology 30, 381382.Google Scholar
Perry, T.L., Hansen, S., Currier, R.D. and Berry, K. (1978). Abnormalities in neurotransmitter amino acids in dominantly inherited cerebellar disorders. Adv. Neurol. 21, 303314.Google ScholarPubMed
Peyronnard, J.M., Lapointe, LBouchard, J.P., Lamontagne, A.. Lemieux, B. and Barbeau, A. (1976). Nerve conduction studies and electromyography in Friedreich’s Ataxia. Can. J. Neurol. Sci. 3, 313317.CrossRefGoogle ScholarPubMed
Plaitakis, A., Berl, S.. Nicklas, W.O. and Yahr, M.D. (1980b). Glutamate dehydrogenase deficiency in spinocerebellar degenerations: correlation with adult-onset recessive ataxia. Ann. Neurol. 8, 129130.Google Scholar
Plaitakis, A., Nicklas, W.J. and Berl, S. (1979). Alterations in uptake and metabolism of aspartate and glutamate in brain of thiamine deficient animals. Brain Res. 171, 489502.CrossRefGoogle ScholarPubMed
Plaitakis, A., Nicklas, W.J. and Desnick, R.J. (1980a). Glutamate dehydrogenase deficiency in three patients with Spinocerebellar syndrome. Ann. Neurol. 7 297303.CrossRefGoogle ScholarPubMed
Prineas, J.B. (1969). The pathogenesis of dying-back polyneuropathies. U — Anultrastructural study of experimental acryla-mide intoxication in the cat. J. Neuropathol. Exp. Neurol. 28, 598621.CrossRefGoogle Scholar
Rassin, D.K., Sturman, J.A. and Gaull, G.E. (1980). Taurine and glutamate: developmental interrelationships in monkey brain. Am. Soc. Neurochem. Proc. 11, 70.Google Scholar
Rea, M.A. and Mcbride, W.J. (1978). Effects of x-irradiation on the levels of glutamate, aspartate and GABA in different regions of the cerebellum of the rat. Life Sci. 23. 23552360.CrossRefGoogle ScholarPubMed
Reed, CF. (1968). Phospholipid exchange between plasma and enthrocytes in man and the dog. J. Clin. Invest. 47, 749760.CrossRefGoogle ScholarPubMed
Remtulla, M.A., Katz, S. and Applegarth, D.A. (1979). Effect of taurine on passive ion transport in rat brain synaptosomes. Can. Fed. Biol. Soc. Proceed 22, 80.Google Scholar
Renooij, W. and Van Golde, L.M.G. (1977). The transposition of molecular classes of phosphatidyl choline across the rat erythrocyte membrane and their exchange between the red cell membrane and plasma lipoproteins. Biochim. Biophys. Acta 470, 465474.CrossRefGoogle ScholarPubMed
Robinson, N. (1968). Chemical changes in spinal cord in Friedreich’s Ataxia and motor neurone disease. J. Neurol. Neurosurg. Psychiat. 31, 330333.CrossRefGoogle ScholarPubMed
Rodriguez-Budelli, M. and Kark, P. (1978). Kinetic evidence for a structural abnormality of lipoamide dehydrogenase in two patients with Friedreich’s Ataxia. Neurology 28, 12831286.CrossRefGoogle Scholar
Rodriguez-Budelli, M.Kark, R.A.P. (1979). Heat-lability of enzyme in lipoamide dehydrogenase-deficiency Friedreich’s Ataxia. Clin. Res. 27, 52A.Google Scholar
Sanchez-Casis, G., Cote, M. and Barbeau, A. (1976). Pathology of the heart in Friedreich’s Ataxia: Review of the literature and report of one case. Can. J. Neurol. Sci. 3, 349354.CrossRefGoogle ScholarPubMed
Santiago, E., Lopez-Moratalia, N. and Segovia, J.L. (1973). Correlation between losses of mitochondrial ATP ase activity and cardiolipin degradation. Biochem. Biophys. Res. Comm. 53, 439445.CrossRefGoogle Scholar
Schoental, R. and Cavanagh, J.B. (1977). Mechanisms involved in the “dying-back” process — an hypothesis implicating coenzymes. Neuropathol. Appi. Neurobiol. 3. 143147.Google Scholar
Seaman, G.V.F., Swank, R.F. and Zukoski, CF. (1979). Red cell membrane differences in multiple sclerosis are acquired from plasma. Lancet 1, 1139.CrossRefGoogle ScholarPubMed
Seaman, G.V.F., Swank, R.L. and Tamblyn, CH. (1980). Plasma origin of red-cell-membrane changes in multiple sclerosis. Lancet 1, 938.CrossRefGoogle ScholarPubMed
Shapcott, D., Melançon, S., Butterworth, R.F., Khoury, K., Collu, R., Breton, G., Geoffroy, G., Lemieux, B. and Barbeau, A. (1976). Glucose and insulin metabolism in Friedreich’s Ataxia. Can. J. Neurol. Sci. 3, 361364.CrossRefGoogle ScholarPubMed
Shukla, V.K.S., Egeskov Jensen, G. and Clausen, J. (1978). Serum fatty acids and peroxidase abnormalities in Batten’s disease. Res. Exp. Med. (Beri) 173, 2734.Google Scholar
Spencer, P.S., Sabri, M.I., Schaumburg, H.H. and Moore, C.L. (1979). Does a defect in energy metabolism in the nerve fiber underlie axonal degeneration in poly-neuropathies? Ann. Neurol. 5, 501507.CrossRefGoogle Scholar
Steinberg, M.S., Magnani, J., Czarkowski, N., Coccia, M.B. and Barbeau, A. (1979). Hemagglutination by lectins in Friedreich’s Ataxia. Can. J. Neurol. Sci. 6, 229309.CrossRefGoogle ScholarPubMed
Stumpf, D.A. and Parks, J.K. (1978). Friedreich’s Ataxia: I. Normal Pyruvate dehydrogenase complex activity in Platelets. Ann. Neurol. 4, 366368.CrossRefGoogle ScholarPubMed
Stumpf, D.A. and Parks, J.K. (1979). Friedreich’s ataxia II – Normal kinetics of lipoamide dehydrogenase. Neurology 29, 820826.CrossRefGoogle ScholarPubMed
Stumpf, D.A. and Parks, J.K. (1980). Urea cycle regulation: I Coupling of ornithine metabolism to mitochondrial oxidative phosphorylation. Neurology 30, 178184.CrossRefGoogle ScholarPubMed
Thoren, C. (1962). Diabetes mellitus in Friedreich’s Ataxia. Acta Paediat. 51 (suppl 135), 239247.CrossRefGoogle Scholar
Troncoso, J.C., Cork, L.C., Steinberg, H.S., Dicarlo, C. and Price, D.L. (1980). Inherited Ataxia in Gordon Setters. Neurology 30, 440.Google Scholar
Tyson, C.A., Vande Zande, H. and Green, D.E. (1976). Phospholipids as lonophores. J. Biol. Chem. 251, 13261332.CrossRefGoogle Scholar
Veronesi, B., Peterson, E.R., Di Vincenzo, G., Spencer, P.S. and Schaumburg, H.H. (1978). A tissue culture model of distal (dying-back) axono-pathy — its use in determining primary neurotoxic compounds. J. Neuropathol. Exp. Neurol. 37, 703.CrossRefGoogle Scholar
Walker, J.L., Chamberlain, S. and Robinson, N. (1980a). Lipids and lipoproteins in Friedreich’s Ataxia. J. Neurol. Neurosurg. Psychiat. 43, 111117.CrossRefGoogle ScholarPubMed
Walker, J.L., Chamberlain, S. and Robinson, N. (1980b). Failure to detect abnormal fatty acid profiles in serum lipoproteins in Friedreich’s Ataxia. Ann. Neurol. 8, 7476.CrossRefGoogle ScholarPubMed
Wastiaux, J.P., Lamoureux, G., Bouchard, J.P., Durivage, A., Barbeau, C. and Barbeau, A. (1978). HLA and complement typing in olivo-ponto-cerebellar atrophy. Can. J. Neurol. Sci. 5, 7581.CrossRefGoogle ScholarPubMed
Watkins, J.C.NMDA Receptors — New light on amino acid-mediated synaptic excitation. Trends in Neurosciences — March 1980, pp. 6164.Google Scholar
Williams, L.L. (1979). Pyruvate oxidation in Charcot-Marie-Tooth disease. Neurology 29, 14921498.CrossRefGoogle ScholarPubMed
Yanagawa, H. and Egami, F. (1975). Effects of asparagusate and lipoate on enzymes of the tricarboxylic acid cycle and related metabolic pathways. J. Biochem. 78, 11531160.CrossRefGoogle ScholarPubMed
Yao, J.K., Ellefson, R.D. and Dyck, P.J. (1976). Lipid abnormalities in hereditary neuropathy: Part 1. Serum non-polar lipids. J. Neurol. Sci. 29, 161175.CrossRefGoogle Scholar
Yao, J.K. and Dyck, P.J. (1978). Lipid abnormalities in hereditary neuropathy Part 2. Serum phospholipids. J. Neurol. Sci. 36, 225236.CrossRefGoogle ScholarPubMed