Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T03:28:59.224Z Has data issue: false hasContentIssue false

Head Pre-Cooling Improves Symptoms of Heat-Sensitive Multiple Sclerosis Patients

Published online by Cambridge University Press:  02 December 2014

Luke F. Reynolds
Affiliation:
School of Health and Human Performance, Dalhousie University, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia
Christine A. Short
Affiliation:
Department of Physical Medicine and Rehabilitation, Dalhousie University, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia
David A. Westwood
Affiliation:
School of Health and Human Performance, Dalhousie University, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia
Stephen S. Cheung*
Affiliation:
School of Health and Human Performance, Dalhousie University, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia Department of Physical Education and Kinesiology, Brock University, St. Catharines, Ontario, Canada
*
Department of Physical Education and Kinesiology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, L2S 3A1, Canada
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Damage to the central nervous system by Multiple Sclerosis (MS) leads to multiple symptoms, including weakness, ambulatory dysfunction, visual disturbances and fatigue. Heat can exacerbate the symptoms of MS whereas cooling can provide symptomatic relief. Since the head and neck areas are particularly sensitive to cold and cooling interventions, we investigated the effects of cooling the head and neck for 60 minutes on the symptoms of MS.

Methods:

We used a double blinded, placebo controlled, cross-over study design to evaluate the effects of head and neck cooling on six heat-sensitive, stable, ambulatory females with MS (Extended Disability Status Scale 2.5-6.5). To isolate the effects of perceived versus physiological cooling, a sham cooling condition was incorporated, where subjects perceived the sensation of being cooled without any actual physiological cooling. Participants visited the clinic three times for 60 minutes of true, sham, or no cooling using a custom head and neck cooling hood, followed by evaluation of ambulation, visual acuity, and muscle strength. Rectal and skin temperature, heart rate, and thermal sensation were measured throughout cooling and testing.

Results:

Both the true and sham cooling elicited significant sensations of thermal cooling, but only the true cooling condition decreased core temperature by 0.37°C (36.97±0.21 to 36.60±0.23°C). True cooling improved performance in the six minute walk test and the timed up-and-go test but not visual acuity or hand grip strength.

Conclusions:

Head and neck cooling may be an effective tool in increasing ambulatory capacity in individuals with MS and heat sensitivity.

Résumé:

Résumé:Contexte:

Le dommage au système nerveux central causé par la sclérose en plaques (SP) est responsable d'une multitude de symptômes dont de la faiblesse, une dysfonction ambulatoire, des troubles visuels et de la fatigue. La chaleur peut exacerber les symptômes de SP alors que le refroidissement peut en améliorer les symptômes. Comme la région de la tête et du cou sont particulièrement sensibles au froid et aux interventions refroidissantes, nous avons étudié les effets d'un refroidissement de 60 minutes de la tête et du cou sur les symptômes de la SP.

Méthodes:

Nous avons utilisé un plan d'étude à double insu, contrôlé par placebo et avec permutation, pour évaluer les effets d'un refroidissement de la tête et du cou chez six femmes atteintes de SP (EDSS 2,5 à 6,5) sensibles à la chaleur, capables de marcher et dont l'état était stable. Nous avons créé une situation de refroidissement factice pendant laquelle les sujets percevaient la sensation de refroidissement sans qu'il y ait de refroidissement physiologique réel afin d'isoler les effets d'un refroidissement perçu par rapport à un refroidissement réel. L'étude comportait 3 visites de 60 minutes à la clinique pendant lesquelles un refroidissement réel, factice ou aucun refroidissement n'était appliqué au moyen du port d'un capuchon refroidissant personnalisé de la tête et du cou, suivi par une évaluation de la marche, de l'acuité visuelle et de la force musculaire. La température rectale et cutanée, le rythme cardiaque et la sensation thermique étaient mesurés pendant toute la durée du refroidissement et de l'évaluation.

Résultats:

Le refroidissement réel et le refroidissement factice ont provoqué des sensations significatives de refroidissement, mais seul le refroidissement réel a diminué la température centrale de 0,37°C (36,97 ± 0,21 à 36,60 ± 0,23°C). Le refroidissement réel a amélioré l'exécution du test de la marche de 6 minutes et du test minuté up-and-go, mais pas l'acuité visuelle ou la force de préhension de la main.

Conclusions:

Le refroidissement de la tête et du cou peut être un outil efficace pour augmenter la capacité ambulatoire chez les patients atteints de SP qui sont sensibles à la chaleur.

Type
Original Article
Copyright
Copyright © Canadian Neurological Sciences Federation 2011

References

1 Dalgas, U, Stenager, E, Ingemann-Hansen, T. Multiple sclerosis and physical exercise: recommendations for the application of resistance-, endurance- and combined training. Mult Scler. 2008; 14(1):3553.CrossRefGoogle ScholarPubMed
2 Motl, RW, Gosney, JL. Effect of exercise training on quality of life in multiple sclerosis: a meta-analysis. Mult Scler. 2008;14(1):129–35.CrossRefGoogle ScholarPubMed
3 Heesen, C, Romberg, A, Gold, S, et al. Physical exercise in multiple sclerosis: supportive care or a putative disease-modifying treatment. Expert Rev Neurother. 2006;6(3):347–55.CrossRefGoogle ScholarPubMed
4 Simons, DJ. A note of the effect of heat and of cold upon certain symptoms of multiple sclerosis. Bull Neurol Inst NY. 1937;6:3856.Google Scholar
5 Uhthoff, W. Untersuchungen uber die bei der multiplen herdsklerose verkommenden auguestorungen. Arch Psychiatr Nervenkr. 1889;21:303–20.Google Scholar
6 Marino, FE. Heat reactions in multiple sclerosis: an overlooked paradigm in the study of comparative fatigue. Int J Hyperthermia. 2009;25(1):3440.CrossRefGoogle Scholar
7 Ku, YT, Montgomery, LD, Wenzel, KC, et al. Physiologic and thermal responses of male and female patients with multiple sclerosis to head and neck cooling. Am J Phys Med Rehabil. 1999;78(5):447–56.CrossRefGoogle ScholarPubMed
8 Ku, YT, Montgomery, LD, Webbon, BW. Hemodynamic and thermal responses to head and neck cooling in men and women. Am J Phys Med Rehabil. 1996;75(6):443–50.CrossRefGoogle ScholarPubMed
9 Capello, E, Gardella, M, Leandri, M, et al. Lowering body temperature with a cooling suit as symptomatic treatment for thermosensitive multiple sclerosis patients. Ital J Neurol Sci. 1995;16(8):5339.CrossRefGoogle ScholarPubMed
10 Kinnman, J, Andersson, T, Andersson, G. Effect of cooling suit treatment in patients with multiple sclerosis evaluated by evoked potentials. Scand J Rehabil Med. 2000;32(1):16–9.Google ScholarPubMed
11 Ku, YT, Montgomery, LD, Lee, HC, et al. Physiologic and functional responses of MS patients to body cooling. Am J Phys Med Rehabil. 2000;79(5):427–34.CrossRefGoogle ScholarPubMed
12 Schwid, SR, Petrie, MD, Murray, R, et al. A randomized controlled study of the acute and chronic effects of cooling therapy for MS. Neurology. 2003;60(12):195560.Google ScholarPubMed
13 Grahn, DA, Murray, JV, Heller, HC. Cooling via one hand improves physical performance in heat-sensitive individuals with multiple sclerosis: a preliminary study. BMC Neurol. 2008;8:14.CrossRefGoogle ScholarPubMed
14 Meyer-Heim, A, Rothmaier, M, Weder, M, et al. Advanced lightweight cooling-garment technology: functional improvements in thermosensitive patients with multiple sclerosis. Mult Scler. 2007;13(2):2327.CrossRefGoogle ScholarPubMed
15 Shvartz, E. Effect of a cooling hood on physiological responses to work in a hot environment. J Appl Physiol. 1970;29(1):36–9.CrossRefGoogle Scholar
16 Nunneley, SA, Maldonado, RJ. Head and/or torso cooling during simulated cockpit heat stress. Aviat Space Environ Med. 1983; 54(6):4969.Google ScholarPubMed
17 Kurtzke, JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33 (11):144452.CrossRefGoogle ScholarPubMed
18 Gagge, AP, Stolwijk, JA, Hardy, JD. Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ Res. 1967;1(1):120.CrossRefGoogle ScholarPubMed
19 Baier, ML, Cutter, GR, Rudick, RA, et al. Low-contrast letter acuity testing captures visual dysfunction in patients with multiple sclerosis. Neurology. 2005;64(6):9925.CrossRefGoogle ScholarPubMed
20 Bohannon, RW. Hand-grip dynamometry provides a valid indication of upper extremity strength impairment in home care patients. J Hand Ther. 1998;11(4):258–60.CrossRefGoogle ScholarPubMed
21 Schoppen, T, Boonstra, A, Groothoff, JW, et al. The timed “up and go” test: reliability and validity in persons with unilateral lower limb amputation. Arch Phys Med Rehabil. 1999;80(7):8258.CrossRefGoogle ScholarPubMed
22 Cattaneo, D, Regola, A, Meotti, M. Validity of six balance disorders scales in persons with multiple sclerosis. Disabil Rehabil. 2006; 28(12):789–95.CrossRefGoogle ScholarPubMed
23 Solari, A, Radice, D, Manneschi, L, et al. The multiple sclerosis functional composite: different practice effects in the three test components. J Neurol Sci. 2005;228(1):71–4.CrossRefGoogle ScholarPubMed
24 Savci, S, Inal-Ince, D, Arikan, H, et al. Six-minute walk distance as a measure of functional exercise capacity in multiple sclerosis. Disabil Rehabil. 2005;27(22):136571.CrossRefGoogle ScholarPubMed
25 Watson, CW. Effect of lowering of body temperature on the symptoms and signs of multiple sclerosis. N Engl J Med. 1959; 261:12539.CrossRefGoogle ScholarPubMed
26 Hopper, CL, Matthews, CG, Cleeland, CS. Symptom instability and thermoregulation in multiple sclerosis. Neurology. 1972;22(2): 1428.CrossRefGoogle ScholarPubMed
27 Scherokman, BJ, Selhorst, JB, Waybright, EA, et al. Improved optic nerve conduction with ingestion of ice water. Ann Neurol. 1985; 17(4):4189.CrossRefGoogle ScholarPubMed
28 Goodman, AD, Brown, TR, Krupp, LB, et al. Sustained-release oral fampridine in multiple sclerosis: a randomised, double-blind, controlled trial. Lancet. 2009;373(9665):7328.CrossRefGoogle ScholarPubMed
29 Geller, M. Appearance of signs and symptoms of multiple sclerosis in response to cold. Mt Sinai J Med. 1974;41(1):127–30.Google ScholarPubMed
30 Syndulko, K, Ke, D, Ellison, GW, et al. Comparative evaluations of neuroperformance and clinical outcome assessments in chronic progressive multiple sclerosis: I. reliability, validity and sensitivity to disease progression. multiple sclerosis study group. Mult Scler. 1996;2(3):142–56.CrossRefGoogle ScholarPubMed
31 Beenakker, EA, Oparina, TI, Hartgring, A, et al. Cooling garment treatment in MS: clinical improvement and decrease in leukocyte NO production. Neurology. 2001;57(5):8924.CrossRefGoogle ScholarPubMed
32 Kay, D, Taaffe, DR, Marino, FE. Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions. J Sports Sci. 1999;17(12):937–44.CrossRefGoogle ScholarPubMed
33 Tucker, R, Marle, T, Lambert, EV, et al. The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J Physiol. 2006; 574(Pt 3):905–15.CrossRefGoogle Scholar
34 Paltamaa, J, Sarasoja, T, Leskinen, E, et al. Measures of physical functioning predict self-reported performance in self-care, mobility, and domestic life in ambulatory persons with multiple sclerosis. Arch Phys Med Rehabil. 2007;88(12):164957.CrossRefGoogle ScholarPubMed