Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T20:58:46.376Z Has data issue: false hasContentIssue false

Mefenamate, an Agent that Fails to Attenuate Experimental Cerebral Infarction

Published online by Cambridge University Press:  02 December 2014

John J. Kelly
Affiliation:
Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB Canada
Roland N. Auer
Affiliation:
Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Blockade of nonselective cation channels is a potential therapeutic approach that has not been attempted in cerebral ischemia, in spite of the ability of these channels to allow cellular calcium influx into neurons. Fenamates are a class of molecules that block these channels, and many congeners are also anti-inflammatory and free radical scavenging. These three mechanisms may contribute to brain damage in ischemia.

Methods:

Pretreatment or posttreatment with mefenamate (30 mg/kg) was evaluated in a temperature-controlled rat transient focal ischemia model. Quantitative histopathology on 26 coronal sections allowed determination of tissue necrosis and tissue atrophy at one week survival.

Results:

Neither pre- nor postischemic administration of a dose previously shown effective in preventing epileptic neuronal necrosis was found to reduce necrosis in cortex, nor in any subcortical structures.

Conclusions:

We conclude that nonselective cation channel blockade with mefenamate affords no neuroprotection in this model. Publication bias against negative studies exists in the literature, but we here report negative findings due to the multiple potentially positive actions of the drug. Closer examination of the effects of the molecule, however, reveals several potentially negative effects as well. We conclude there may be inherent weakness in pharmacologic monotherapy, even with molecules having protean potentially beneficial effects. This conclusion seems to have been borne out by the results of recent clinical trials.

Résumé:

RÉSUMÉ: Contexte:

Le blocage des canaux cationiques non sélectifs est une approche thérapeutique potentielle qui n’a pas été tentée dans l’ischémie cérébrale malgré la capacité qu’ont ces canaux de permettre l’influx de calcium cellulaire dans les neurones. Les fénamates sont une classe de molécules qui bloquent ces canaux et plusieurs d’entre eux sont également anti-inflammatoires et anti-radicalaires. Ces trois mécanismes peuvent contribuer au dommage cérébral dans l’ischémie.

Méthodes:

Le prétraitement ou le post-traitement par le méfénamate (30mg/kg) a été évalué dans un modèle murin d’ischémie focale transitoire sous temperature contrôlée. L’histopathologie quantitative de 26 sections coronales a permis d’identifier la nécrose tissulaire et l’atrophie après une semaine de survie.

Résultats:

Ni l’administration pré ou post ischémie n’a diminué la nécrose du cortex ou de structures sous-corticales.

Conclusions:

Nous concluons que le blocage de canaux cathioniques non sélectifs au moyen du méfénamate ne confère aucune neuroprotection chez ce modèle. Il existe dans la littérature un biais de publication contre les études dont les résultats sont négatifs. Nous rapportons ici des résultats négatifs à cause des multiples effets positifs potentiels de ce médicament. Cependant, un examen plus poussé des effets de cette molécule révèle également plusieurs effets négatifs potentiels. Nous concluons qu’il existe peut-être des faiblesses inhérentes à la monothérapie pharmacologique, même avec des molécules qui ont des effets bénéfiques potentiels protéiformes. Les résultats d’essais cliniques récents semblent appuyer cette conclusion.

Type
Experimental Neurosciences
Copyright
Copyright © The Canadian Journal of Neurological 2003

References

1. Partridge, LD, Valenzuela, CF. Block of hippocampal CAN channelsby flufenamate. Brain Res 2000;867:143148.CrossRefGoogle Scholar
2. Estacion, M, Schilling, WP. Blockade of maitotoxin-induced oncoticcell death reveals zeiosis. BMC Physiol 2002;2:213.Google Scholar
3. Partridge, LD, Müller, TH, Swandulla, D. Calcium-activatednonselective channels in the nervous system. Brain Res Rev 1994;19:319325.CrossRefGoogle ScholarPubMed
4. Siesjò, BK, Bengtsson, F. Calcium fluxes, calcium antagonists, andcalcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood FlowMetab 1989;9:127140.Google Scholar
5. Auer, RN. Calcium channel antagonists in cerebral ischemia: areview. Drug Dev 1993;2:307317.Google Scholar
6. Gogelein, H, Dahlem, D, Englert, HC, Lang, HJ. Flufenamic acid,mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett 1990;268:7982.Google Scholar
7. Partridge, LD, Swandulla, D. Single Ca-activated cation channels inbursting neurons of Helix. Pflügers Arch 1987;410:627631.Google Scholar
8. Fraser, DD, MacVicar, BA. Cholinergic-dependent plateau potentialinhippocampal CA1 pyramidalneurons. J Neurosci 1996;16:41134128.CrossRefGoogle Scholar
9. Mutch, WAC, Hansen, AJ. Extracellular pH changes duringspreading depression and cerebral ischemia: mechanisms of brainpH regulation. J Cereb Blood Flow Metab 1984;4:1727.CrossRefGoogle Scholar
10. Chopp, M, Zhang, RL, Chen, H, et al. Postischemic administration ofan anti-mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 1994;25:869876.CrossRefGoogle Scholar
11. Clark, WM, Madden, KP, Rothlein, R, Zivin, JA. Reduction of centralnervous system ischemic injury in rabbits using leukocyte adhesion antibody treatment. Stroke 1991;22:877883.CrossRefGoogle Scholar
12. Mori, E, del Zoppo, GJ, Chambers, JD, Copeland, BR, Arfors, K-E. Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 1992;23:712718.CrossRefGoogle ScholarPubMed
13. Di Rosa, M, Papadimitriou, JM, Willoughby, DA. A histopathologicaland pharmacological analysis of the mode of action of nonsteroidal anti-inflammatory drugs. J Pathol 1971;105:239256.Google Scholar
14. Asanuma, M, Nishibayashi-Asanuma, S, Miyazaki, I, Kohno, M, Ogawa, N. Neuroprotective effects of nonsteroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem 2001;76:18951904.Google Scholar
15. Zhu, CZ, Auer, RN. Graded hypotension and MCA occlusionduration: effect in transient focal ischemia. J Cereb Blood Flow Metab 1995;15:980988.Google Scholar
16. Ridenour, TR, Warner, DS, Todd, MM, Gionet, TX. Comparativeeffects of propofol and halothane on outcome from temporary middle cerebral artery occlusion in the rat. Anesthesiology 1992;76:807812.Google Scholar
17. Warner, DS, McFarlane, C, Todd, MM, Ludwig, P, McAllister, AM. Sevoflurane and halothane reduce focal ischemic brain damage in the rat. Possible influence on thermoregulation. Anesthesiology 1993;79:985992.Google Scholar
18. Hamilton, MG, Tranmer, BI, Auer, RN. Insulin reduction of cerebralinfarction due to transient focal ischemia. J Neurosurg 1995;82:262268.Google Scholar
19. Voll, CL, Auer, RN. Insulin attenuates ischemic brain damageindependent of its hypoglycemic effect. J Cereb Blood Flow Metab 1991;11:10061014.CrossRefGoogle Scholar
20. Miyamoto, O, Auer, RN. Hypoxia, hyperoxia, ischemia and brainnecrosis. Neurology 2000;54:362371.Google Scholar
21. Peatfield, RC, Petty, RG, Rose, FC. Double blind comparison ofmefenamic acid and acetaminophen (paracetamol) in migraine. Cephalalgia 1983;3:129134.CrossRefGoogle ScholarPubMed
22. Saeed, SA, Warren, BT. On the mode of action and biochemicalproperties of anti-inflammatory drugs. I. Biochem Pharmacol 1973;22:19651969.CrossRefGoogle ScholarPubMed
23. Coimbra, C, Drake, M, Boris-Mòller, F, Wieloch, T. Long-lastingneuroprotective effect of postischemic hypothermia and treatment with an anti-inflammatory/antipyretic drug. Evidence for chronic encephalopathic processes following ischemia. Stroke 1996;27:15781585.CrossRefGoogle ScholarPubMed
24. Wallenstein, MC. Differential effects of prostaglandin synthetaseinhibitors on EEG in rat. Eur J Pharmacol 1985;111:201209.Google Scholar
25. Voll, CL, Auer, RN. Postischemic seizures and necrotizing ischemicbrain damage: neuroprotective effect of postischemic diazepam and insulin. Neurology 1991;41:423428.Google Scholar
26. Ikonomidou-Turski, C, Cavalheiro, EA, Turski, L, et al. Differentialeffects of nonsteroidal anti-inflammatory drugs on seizures produced by pilocarpine in rats. Brain Res 1988;462:275285.Google Scholar
27. Poronnik, P, Ward, MC, Cook, DI. Intracellular Ca2+ release byflufenamic acid and other blockers of the nonselective cationchannel. FEBS Lett 1992;296:245248.Google Scholar
28. Ottolia, M, Toro, L. Potentiation of large conductance KCa channelsby niflumic, flufenamic, and mefenamic acids. Biophys J 1994;67:22722279.CrossRefGoogle Scholar
29. Vyskocil, F, Kritz, N, Bures, J. Potassium-selective microelectrodesused for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 1972;39:255259.Google Scholar
30. Nedergaard, M, Hansen, AJ. Spreading depression is not associated with neuronalin juryinthenormal brain. Brain Res 1988;449:395398.Google Scholar
31. Gidò, G, Kristián, T, Katsura, K, Siesjò, BK. The influence of repeatedspreading depression-induced calcium transients on neuronal viability in moderately hypoglycemic rats. Exp Brain Res 1994;97:397403.Google Scholar
32. Dietrich, WD, Feng, ZC, Leistra, H, Watson, BD, Rosenthal, M. Photothrombotic infarction triggers multiple episodes of cortical spreading depression in distant brain regions. J Cereb Blood Flow Metab 1994;14:2028.CrossRefGoogle ScholarPubMed
33. Hossmann, K-A. Viability thresholds and the penumbra of focalischemia. Ann Neurol 1994;36:557565.CrossRefGoogle Scholar
34. Grotta, J. Why do all drugs work in animals but none in strokepatients? 2. Neuroprotective therapy. J Intern Med 1995;237:8994.Google Scholar
35. Anonymous. Recommendations for standards regarding preclinicalneuroprotective and restorative drug development. Stroke 1999;30:27522758.Google Scholar
36. Auer, RN. Points of view. Early application of the results of animalexperimentation to clinical trials: Con. J Neurosurg Anesthesiol 1996;8:7377.Google Scholar
37. Auer, RN. Nonpharmacologic (physiologic) neuroprotection in thetreatment of brain ischemia. Ann NY Acad Sci 2001;939:271282.Google Scholar
38. Flynn, E, Auer, RN. Eubaric hyperoxemia and experimental cerebralinfarction. Ann Neurol 2002;52:566572. Google Scholar