Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T03:00:44.107Z Has data issue: false hasContentIssue false

Presurgical Language fMRI and Postsurgical Deficits: A Single Centre Experience

Published online by Cambridge University Press:  23 September 2014

Charmaine Wiens
Affiliation:
Departments of Radiology, University of Calgary, Calgary, Alberta, Canada
Bradley G. Goodyear*
Affiliation:
Departments of Radiology, University of Calgary, Calgary, Alberta, Canada Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada Psychiatry, University of Calgary, Calgary, Alberta, Canada Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
Ankur Goel
Affiliation:
Departments of Radiology, University of Calgary, Calgary, Alberta, Canada
Paolo Federico
Affiliation:
Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
Walter Hader
Affiliation:
Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
Mayank Goyal
Affiliation:
Departments of Radiology, University of Calgary, Calgary, Alberta, Canada Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
*
Seaman Family MR Research Centre, Foothills Medical Centre/University of Calgary, 1403-29th Street NW, Calgary, Alberta, T2N 2T9, Canada. Email: goodyear@ucalgary.ca.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

In this study, we conducted a retrospective investigation of our initial single-centre experience with the clinical use of functional magnetic resonance imaging (fMRI) of hemisphere dominance for language processing (i.e., language lateralization). We demonstrated its association with surgical outcome and its potential impact on surgical planning and patient management.

Methods:

Fifty-two cases were reviewed, covering the period from July 2007 to July 2010. Clinical fMRI reports were examined to determine the hemisphere dominance for language processing. Neurological reports were examined to determine if new language deficits were present post-surgery. Neurosurgeon notes were also reviewed to determine if fMRI had an impact on surgical planning.

Results:

Of the cases reviewed, 49 (94%) generated conclusive fMRI. Eleven (22%) patients exhibited fMRI language lateralization contralateral to pathology; zero of nine of these patients that had surgery experienced post-surgical deficits. Twenty-two (44%) patients exhibited fMRI language lateralization ipsilateral to pathology; three of 13 of these patients that had surgery experienced post-surgical deficits. Sixteen (34%) patients exhibited bilateral lateralization of language; five of 13 of these patients that had surgery experienced post-surgery deficits. Several post-fMRI reports indicated that fMRI results had an impact on surgical planning.

Conclusions:

Our results suggest that fMRI demonstrations of language processing within the hemisphere ipsilateral to pathology (either ipsilateral alone or bilateral) is associated with a greater risk for post-surgical language deficits, and in these cases, fMRI results should be taken into consideration for pre-surgical planning.

Résumé

RÉSUMÉ Contexte:

Nous avons examiné rétrospectivement notre expérience initiale dans notre centre concernant l'utilisation en clinique de l'imagerie par résonance magnétique fonctionnelle (IRMf) de l'hémisphère dominant pour le traitement du langage (c.-à-d. sa latéralisation). Nous avons démontré son association avec le résultat chirurgical et son impact potentiel sur la planification de la chirurgie et le traitement du patient.

Méthode:

Les dossiers de 52 patients, traités entre juillet 2007 et juillet 2010, ont été examinés. Les rapports cliniques d'IRMf ont été examinés afin de déterminer quel était l'hémisphère dominant pour le traitement du langage chez le patient. Les rapports neurologiques ont été examinés pour déterminer s'il existait de nouveaux déficits langagiers après la chirurgie. Nous avons également examiné les notes du neurochirurgien pour déterminer si l'IRMf avait eu un impact sur la planification de la chirurgie.

Résultats:

Parmi les dossiers examinés, 49 (94%) contenaient un examen IRMf concluant. Onze patients (22%) avaient une latéralisation du langage contralatérale à la pathologie et aucun parmi neuf de ces patients qui ont subi une chirurgie n'a présenté de déficit postchirurgical. Vingt-deux patients (44%) avaient une latéralisation du langage ipsilatérale à la pathologie à l'IRMf. Trois parmi 13 des patients qui ont subi une chirurgie ont présenté des déficits postchirurgicaux. Plusieurs rapports post-IRMf indiquaient que les résultats de l'IRMf avaient eu un impact sur la planification de la chirurgie.

Conclusions:

Nos résultats suggèrent que la démonstration par IRMf que le centre du langage est dans l'hémisphère ipsilatéral par rapport à la pathologie (soit ipsilatéral seulement ou bilatéral) est associé à un risque plus élevé de déficit du langage et que dans ces cas, les résultats de l'IRMf devraient être pris en compte lors de la planification de la chirurgie.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Bell, BD, Davies, KG, Haltiner, AM, Walters, GL. Intracarotid amobarbital procedure and prediction of postoperative memory in patients with left temporal lobe epilepsy and hippocampal sclerosis. Epilepsia. 2000 Aug;41(8):9927.CrossRefGoogle ScholarPubMed
2. Wada, J, Rasmussen, T. Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. 1960. J Neurosurg. 2007 Jun;106(6):111733.CrossRefGoogle ScholarPubMed
3. Binder, JR, Swanson, SJ, Hammeke, TA, et al. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996 Apr;46(4):97884.CrossRefGoogle Scholar
4. Haberg, A, Kvistad, KA, Unsgard, G, Haraldseth, O. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery. 2004 Apr;54(4):90214; discussion 14–5.CrossRefGoogle ScholarPubMed
5. Hall, WA, Truwit, CL. Intraoperative MR-guided neurosurgery. J Magn Reson Imaging. 2008 Feb;27(2):36875.CrossRefGoogle ScholarPubMed
6. Krings, T, Reinges, MH, Erberich, S, et al. Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry. 2001 Jun;70(6):74960.CrossRefGoogle ScholarPubMed
7. Lee, CC, Ward, HA, Sharbrough, FW, et al. Assessment of functional MR imaging in neurosurgical planning. AJNR Am J Neuroradiol. 1999 Sep;20(8):15119.Google ScholarPubMed
8. Van Westen, D, Skagerberg, G, Olsrud, J, Fransson, P, Larsson, EM. Functional magnetic resonance imaging at 3T as a clinical tool in patients with intracranial tumors. Acta Radiol. 2005 Oct;46(6):599609.CrossRefGoogle ScholarPubMed
9. Mehta, AD, Klein, G. Clinical utility of functional magnetic resonance imaging for brain mapping in epilepsy surgery. Epilepsy Res. 2010 Mar;89(1):12632.CrossRefGoogle Scholar
10. Bizzi, A, Blasi, V, Falini, A, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008 Aug;248(2):57989.CrossRefGoogle ScholarPubMed
11. Binder, JR, Swanson, SJ, Hammeke, TA, Sabsevitz, DS. A comparison of five fMRI protocols for mapping speech comprehension systems. Epilepsia. 2008 Dec;49(12):198097.CrossRefGoogle ScholarPubMed
12. Bookheimer, S. Pre-surgical language mapping with functional magnetic resonance imaging. Neuropsychol Rev. 2007 Jun;17(2):14555.CrossRefGoogle ScholarPubMed
13. Mosher, VA, Liebenthal, E, Goodyear, BG. Active and passive fMRI for presurgical mapping of motor and language cortex: InTech – Open Access Publisher, Rijeka, Croatia; (In Press).Google Scholar
14. Zaca, D, Nickerson, JP, Deib, G, Pillai, JJ. Effectiveness of four different clinical fMRI paradigms for preoperative regional determination of language lateralization in patients with brain tumors. Neuroradiology. 2012 Sep;54(9):101525.CrossRefGoogle ScholarPubMed
15. Chlebus, P, Mikl, M, Brazdil, M, Pazourkova, M, Krupa, P, Rektor, I. fMRI evaluation of hemispheric language dominance using various methods of laterality index calculation. Exp Brain Res. 2007 May;179(3):36574.CrossRefGoogle ScholarPubMed
16. Fernandez, G, Specht, K, Weis, S, et al. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology. 2003 Mar 25;60(6):96975.CrossRefGoogle ScholarPubMed
17. Jansen, A, Menke, R, Sommer, J, et al. The assessment of hemispheric lateralization in functional MRI–robustness and reproducibility. Neuroimage. 2006 Oct 15;33(1):20417.CrossRefGoogle ScholarPubMed
18. FSL. FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl.Google Scholar
19. Jenkinson, M, Bannister, P, Brady, M, Smith, S. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:82541.CrossRefGoogle Scholar
20. Smith, SM. Fast robust automated brain extraction. Human Brain Mapping. 2002;17:14355.CrossRefGoogle ScholarPubMed
21. Roux, FE, Boulanouar, K, Lotterie, JA, Mejdoubi, M, LeSage, JP, Berry, I. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery. 2003 Jun;52(6):133545; discussion 45–7.CrossRefGoogle ScholarPubMed
22. Kovac, S, Moddel, G, Reinholz, J, et al. Visual naming performance after ATL resection: impact of atypical language dominance. Neuropsychologia. 2012 Jun;48(7):22215.CrossRefGoogle Scholar