Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T04:52:54.987Z Has data issue: false hasContentIssue false

Utility of a Moveable 1.5 Tesla Intraoperative MR Imaging System

Published online by Cambridge University Press:  02 December 2014

Taro Kaibara
Affiliation:
Seaman Family MR Research Centre, Foothills Hospital, Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta
John K. Saunders
Affiliation:
Seaman Family MR Research Centre, Foothills Hospital, Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta
Garnette R. Sutherland
Affiliation:
Seaman Family MR Research Centre, Foothills Hospital, Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

This study demonstrates the utility of a newly-developed moveable 1.5 Tesla intraoperative MR imaging system using a case report of a multi-lobulated parafalx meningioma.

Clinical Presentation:

A 43-year-old female presented with progression of a multi-lobulated anterior parafalx meningioma several years following resection of a large left frontal convexity meningioma.

Intervention and Technique:

Surgical excision of the lesion was undertaken. Following apparent total resection, intraoperative MR imaging revealed two residual dumbell shaped lobules. Using these updated MR images, the tumour was readily identified and removed.

Conclusion:

The moveable 1.5 Tesla intraoperative MR system used in the present case provides rapid, high resolution MR images during neurosurgical procedures. Moving the magnet out of the surgical field during surgery permits the use of all standard neurosurgical instruments. The ease of use and quality of images combined with minimal interference on well-established surgical techniques makes this system a valuable adjunct in the neurosurgical treatment of intracranial disease.

Résumé

RÉSUMÉObjectif:

Cette étude démontre l’utilité d’un nouveau système mobile d’imagerie par resonance magnétique (IRM) Tesla 1.5 au moyen d’un cas de méningiome multilobulé situé près de la faux du cerveau.

Préntation clinique:

Une femme de 43 ans s’est présentée avec un méningiome antérieur multilobulé situé près de la faux du cerveau, évoluant depuis plusieurs années suite à la résection d’un gros méningiome de la convexité frontale gauche. Intervention et technique: Une excision chirurgicale de la lésion a été entreprise. Suite à une résection apparemment totale, l’IMR extemporanée a révélé deux lobules résiduels en forme d’haltères. La tumeur a alors été facilement identifiée et excisée suite à l’information fournie par ces images extemporanées.

Conclusions:

Le système mobile d’IMR extemporanée Tesla 1.5 utilisé dans ce cas fournit rapidement des images de haute résolution pendant des interventions neurochirurgicales. L’aimant est déplacé hors du champ opératoire pendant la chirurgie, ce qui permet l’utilisation de tous les instruments neurochirurgicaux standards. La facilité d’utilisation et la qualité des images combinées à une interférence minimale dans les techniques chirurgicales standards font de ce système un instrument d’appoint précieux dans le traitement neurochirurgical des pathologies intracrâniennes.

Type
Case Report
Copyright
Copyright © The Canadian Journal of Neurological 1999

References

1. Dandy, WE. Roentgenography of the brain after the injection of airinto the spinal canal. Ann Surg 1919; 70: 397403.Google Scholar
2. Darins, J. Radiography of the living brain. Nature 1984; 308: 225 Google Scholar
3. Watanabe, E, Mayanagi, Y, Kosugi, Y, et al. Open surgery assisted bythe neuronavigator: a stereotactic, articulated, sensitive arm. Neurosurgery 1991; 28: 792799.Google Scholar
4. Apuzzo, ML, Weinberg, RA. Architecture and functional design ofadvanced neurosurgical operating environments. Neurosurgery 1993; 33: 663672.Google Scholar
5. Barnett, GH, Kormos, DW, Steiner, CP, et al. Intraoperativelocalization using an armless, frameless stereotactic wand. Technical note. J Neurosurg 1993; 78: 510514.Google Scholar
6. Kato, A, Yoshimine, T, Hayakawa, T, et al. A frameless, armlessnavigational systemforcomputer-assisted neurosurgery. Technical note. J Neurosurg 1991; 74: 845849.Google Scholar
7. Maciunas, RJ, Galloway, RLJ, Fitzpatrick, JM, et al. A universalsystem for interactive image-directed neurosurgery. StereotactFunct Neurosurg 1992; 58: 108113.Google Scholar
8. Dorward, NL, Alberti, O, Velani, B, et al. Postimaging braindistortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 1998; 88: 656662.Google Scholar
9. Roberts, DW, Hartov, A, Kennedy, FE, et al. Intraoperative brainshift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 1998; 43: 749758.Google Scholar
10. Tronnier, VM, Wirtz, CR, Knauth, M, et al. Intraoperative diagnosticand interventional magnetic resonance imaging in neurosurgery. Neurosurgery 1997; 40: 891900.Google Scholar
11. Steinmeier, R, Fahlbusch, R, Ganslandt, O, et al. Intraoperativemagnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 1998; 43: 739747.CrossRefGoogle Scholar
12. Black, PM, Moriarty, T, Alexander, E, et al. Development and imple-mentation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 1997; 41: 831842.Google Scholar
13. Jolesz, FA. Interventional and intraoperative MRI: a generaloverview of the field. J Magn Reson Imaging 1998; 8: 37.Google Scholar
14. Jolesz, FA, Morrison, PR, Koran, SJ, et al. Compatibleinstrumentation for intraoperative MRI: expanding resources. J Magn Reson Imaging 1998; 8: 811.Google Scholar
15. Wirtz, CR, Bonsanto, MM, Knauth, M, et al. Intraoperative magneticresonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg 1997; 2: 172179.Google Scholar
16. Hinks, RS, Bronskill, MJ, Kucharczyk, W, et al. MR systems forimage-guided therapy. J Magn Reson Imaging 1998; 8: 1925.Google Scholar