Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-04T17:39:42.818Z Has data issue: false hasContentIssue false

Memory Scanning and Structured Learning in Alzheimer's Disease and Parkinson' Disease*

Published online by Cambridge University Press:  29 November 2010

G.C. Laflèche
Affiliation:
School of Psychology, University of Ottawa, presently at Mass. Gen. Hosp., Boston. Human Neurosciences Research Unit, University of Ottawa. Memory Disorder Clinic, University of Ottawa at the Ottawa General Hospital.
D.T. Stuss
Affiliation:
School of Psychology, University of Ottawa, presently at Mass. Gen. Hosp., Boston. Rotman Research Institute of Baycrest Centre, North York, Ontario. Departments of Psychology and Medicine, University of Toronto.
R.F. Nelson
Affiliation:
School of Medicine (Neurology), University of Ottawa. Ottawa General Hospital, Ottawa, Ontario.
T.W. Picton
Affiliation:
School of Psychology, University of Ottawa, presently at Mass. Gen. Hosp., Boston. School of Medicine (Neurology), University of Ottawa. Human Neurosciences Research Unit, University of Ottawa. Ottawa General Hospital, Ottawa, Ontario.

Abstract

This study investigated the speed of short-term memory scanning in two groups of patients: patients with Parkinson's disease (PD) (primarily subcortical pathology) and patients with a presumptive diagnosis of dementia of the Alzheimer type (DAT) (primarily cortical pathology). Non-demented PD patients (M age = 58.3), mildly demented DAT patients (M age = 67.0), and normal control (NC) subjects (M age = 58.9) were compared to one another in order to determine whether the presence of slowed scanning differentiates subcortical from cortical pathology. The three groups did not differ significantly on the memory scanning task. Slowed scanning speed does appear to occur in some patients with PD, however. This may relate to age, duration of disease, or an interaction between these two. Despite normal scanning speed, most DAT patients required highly structured instructions to be able to carry out the item-recognition task, and many remainedunable to perform this task even with additional instructions.

Résumé

Cette étude examine deux différents groupes de patients dans le but d'analyser la vitesse d'exploration de la mémoire à court terme. Il s'agit done de ceux qui sont atteints d'un parkinson (PD) (principalement pathologie sous-corticale) et de ceux qui semblent souffrir d'une démence de type Alzheimer (DAT) (principalement pathologie corticale). Une comparaison a été établie entre les patients non-déments (PD) (âge M = 58.3), les patients légèrement déments (DAT) (âge M = 67.0) et les sujets contrôlés normaux (NC) (âge M = 58.9) dans le but de déterminer si l'exploration ralentie crée une différence entre une pathologie corticale et sous-corticale. Parmi les trois groupes, les différences relevées au niveau de la tâche d'exploration de la mémoire n'étaient pas significatives. Cependant, certains patients atteints d'un parkinson semblaient effectuer cet exercice d'exploration plus lentement. Ceci pourrait être dû à l'âge, à la durée de la maladie, ou à une interaction entre ces deux facteurs. La plupart des patients DAT ont dû recevoir des directives très précises et détaillées avant de pouvoir effectuer la tâche voulant qu'ils reconnaissent certains objets, ceci en dépit des résultats indiquant une vitesse d'exploration normale, et plusieurs ont été incapables de l'exécuter, même après avoir reçu des directives supplémentaires.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M.L. (1978). Subcortical dementia. In Katzman, R., Terry, R.D., & Bick, K.L. (Eds.), Alzheimer's disease: Senile dementia and related disorders (Vol. 7, pp. 173180). New York: Raven Press.Google Scholar
Albert, M.L., Feldman, R.G., & Willis, A.L. (1974). The ‘subcortical dementia’ of progressive supranuclear palsy. Journal of Neurology, Neurosurgery, and Psychiatry, 37, 121130.CrossRefGoogle ScholarPubMed
Barbeau, G.L., & Pinard, A. (1951). Epreuve individuelle d'intelligence générale. Montréal: Institut de recherches psychologiques.Google Scholar
Benson, D.F. (1984). Subcortical dementia: A clinical approach. In Mayeux, R. & Rosen, W.G. (Eds.), The Dementias, Advances in Neurology (Vol. 38, pp. 185194). New York: Raven Press.Google Scholar
Brun, A., & Gustafson, L. (1976). Distribution of cerebral degeneration in Alzheimer's disease: A clinicopathological study. Archives of Psychiatry, 223, 1533.CrossRefGoogle Scholar
Coblentz, J.M., Mattis, S., Zingesser, L.H., Kasoff, S.S., Winiewski, H.M., & Katzman, R. (1973). Presenile dementia: Clinical aspects and evaluation of cerebrospinal fluid dynamics. Archives of Neurology, 29, 299308.CrossRefGoogle ScholarPubMed
Cummings, J.L. (1986). Subcortical dementia: Neuropsychology, Neuropsychiatry, and Pathophysiology. British Journal of Psychiatry, 149, 682697.CrossRefGoogle ScholarPubMed
de Lancy Home, D.J. (1971). Performance on delayed-response tasks by patients with Parkinsonism. Journal of Neurology, Neurosurgery, and Psychiatry, 34, 192194.Google Scholar
Dugas, J., & Kelles, G. (1974). Encoding and retrieval processes in normal children and retarded adolescents. Journal of Experimental Child Psychology, 17, 177185.CrossRefGoogle ScholarPubMed
Evarts, E.V., Teravainen, H., & Calne, D.B. (1981). Reaction time in Parkinson's disease. Brain, 104, 167186.CrossRefGoogle ScholarPubMed
Ferris, S., Crook, T., Sathananthan, G., & Gershon, S. (1976). Reaction time as a diagnostic measure in senility. Journal of the American Geriatrics Society, 24, 529533.CrossRefGoogle ScholarPubMed
Freedman, M., & Oscar-Berman, M. (1986). Selective delayed response deficits in Parkinson's and Alzheimer's disease. Archives of Neurology, 43, 886890.CrossRefGoogle ScholarPubMed
Garron, D.C., Klawans, H.L., & Narin, F.J. (1972). Intellectual functioning of persons with idiopathic parkinsonism. Journal of Nervous and Mental Disease, 154, 445452.CrossRefGoogle ScholarPubMed
Goldberg, E., & Bilder, R.M. Jr (1987) The frontal lobes and hierarchical organization of cognitive control. In Perecman, E. (Ed.), The frontal lobes revisited (pp. 159187). New York: IRBN Press.Google Scholar
Grubbs, F.E. (1969). Procedures for detecting outlying observations in samples. Te-chnometrics, 11, 121.Google Scholar
Hachinski, V.C., Iliff, L.D., Zihlka, E., du Boulay, G.H., McAllister, V.L., Marshall, J., Ross Russell, R.W., & Symon, L. (1975). Cerebral blood flow in dementia. Archives of Neurology, 32, 633637.CrossRefGoogle ScholarPubMed
Hansch, E.C., Syndulko, K., Cohen, S.N., Goldberg, Z.I., Potvin, A.R., & Tourtelotte, W.W. (1982). Cognition in Parkinson's disease: an event-related potential perspective. Annals of Neurology, 11, 599607.CrossRefGoogle ScholarPubMed
Harris, G., & Fleer, R. (1974). High speed memory scanning in mental retardates: Evidence for a central processing deficit. Journal of Experimental Child Psychology, 17, 452459.CrossRefGoogle ScholarPubMed
Hasher, L., & Zacks, R.T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108, 386388.Google Scholar
Hines, T.M., & Volpe, B.T. (1985). Semantic activation in patients with Parkinson's disease. Experimental Aging Research, 11, 105107.CrossRefGoogle ScholarPubMed
Hoehn, M., & Yahr, M.D. (1967). Parkinsonism: onset, progression and mortality. Neurology, 17, 427442.CrossRefGoogle ScholarPubMed
Jorm, A.F. (1986). Controlled and automatic information processing in senile dementia: A review. Psychological Medicine, 16, 7788.CrossRefGoogle ScholarPubMed
Kertesz, A. (1982). The Western Aphasia Battery: Test manual, stimulus cards, test booklets (Test kit). New York: Grune & Stratton.Google Scholar
Maisto, A., & Jerome, M. (1977). Encoding and high-speed memory scanning of retarded and nonretarded adolescents. American Journal of Mental Deficiency, 82, 282286.Google ScholarPubMed
Marsden, C.D. (1978). The diagnosis of dementia. In Isaacs, A.D. & Post, F. (Eds.), Studies in Geriatric Psychiatry (pp. 95118). Chichester: John Wiley & Sons.Google Scholar
Matarazzo, J.D. (1972). Wechsler's measurement and appraisal of adult intelligence, 5th and enlarged edition (pp. 228289). New York: Oxford University Press.Google Scholar
Matarazzo, J.D., & Herman, D.D. (1984). Relationships of education and IQ in the WAIS-R standardization sample. Journal of Consulting and Clinical Psychology, 52, 631634.CrossRefGoogle Scholar
Mattis, S. (1976). Mental status examination for organic mental syndrome in the elderly patient. In Bellak, L. & Karasu, T.B. (Eds.), Geriatric Psychiatry: A handbook for psychiatrists and primary care physicians (pp. 77121). New York: Grune & Stratton.Google Scholar
McHugh, P.R., & Folstein, M.F. (1975). Psychiatric syndromes of Huntington's chorea: A clinical and phenomenologic study. In Benson, D.F. & Blumer, D. (Eds.), Psychiatric aspects of neurologic disease (pp. 267286). New York: Grune & Stratton.Google Scholar
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlam, E.M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services, Task Force on Alzheimer's Disease. Neurology (Cleveland), 34, 939944.CrossRefGoogle ScholarPubMed
Miller, E. (1977). A note on visual information processing in presenile dementia: A preliminary report. British Journal of Social and Clinical Psychology, 16, 99100.CrossRefGoogle ScholarPubMed
Milner, B. (1982). Some cognitive effects of frontal-lobe lesions in man. In Broadbent, D.E. & Weiskrantz, L. (Eds.), The neuropsychology of cognitive function (pp. 211226). London: The Royal Society.Google Scholar
Mortimer, J.A., Pirozzolo, F.J., Hansch, E.C., & Webster, D.D. (1982). Relationship of motor symptoms to intellectual deficits in Parkinson disease. Neurology, 32, 133137.CrossRefGoogle ScholarPubMed
Naville, F. (1922). Les complications et les sequelles mentales de l'encéphalite épidémique. Encéphale, 17, 369375, 423–436.Google Scholar
Petrides, M. (1982). Motor conditional associative-learning after selective prefron-tal lesions in the monkey. Behavioural Brain Research, 5, 407413.CrossRefGoogle ScholarPubMed
Petrides, M. (1985a). Deficits on conditional associative-learning tasks after frontal-and temporal-lobe lesions in man. Neuropsychologia, 23, 601614.CrossRefGoogle ScholarPubMed
Petrides, M. (1985b). Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behavioural Brain Research, 16, 95101.CrossRefGoogle ScholarPubMed
Picton, T.W., Stuss, D.T., & Marshall, K.C. (1986). Attention and the brain. In Friedman, S.L., Klivington, K.A., & Peterson, R.W. (Eds.), The brain, cognition, and education (pp. 1979). New York: Academic Press.CrossRefGoogle Scholar
Pirozzolo, F.J., Christensen, K.J., Ogle, K.M., Hansch, E.C., & Thompson, W.G. (1981). Simple and choice reaction time in dementia: Clinical implications. Neurobiology of Aging, 2, 113117.CrossRefGoogle ScholarPubMed
Rafal, R.D., Posner, M.I., Walker, J.A., & Friedrich, F.J. (1984). Cognition and the basal ganglia: separating mental and motor components of performance in Parkinson's disease. Brain, 107, 10831094.CrossRefGoogle ScholarPubMed
Roth, M. (1980). Aging of the brain and dementia: An overview. In Amaducci, L. (Ed.), Aging of the brain and dementia (Vol. 13, pp. 121). New York: Raven Press.Google Scholar
Shiffrin, R.M., & Schneider, W. (1977). Controlled and automatic human information processing. II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127190.CrossRefGoogle Scholar
Silverman, W. (1974) High speed scanning of nonalphanumeric symbols in cultural-ly-famillially retarded and non-retarded children. American Journal of Mental Deficiency, 49, 4451.Google Scholar
Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652654.CrossRefGoogle ScholarPubMed
Sternberg, S. (1969). The discovery of processing stages: Extension of Donders' method. Acta Psychologica, 30, 276315.CrossRefGoogle Scholar
Sternberg, S. (1975). Memory scanning: New findings and current controversies. Quarterly Journal of Experimental Psychology, 27, 132.CrossRefGoogle Scholar
Stuss, D.T., & Benson, D.F. (1986). The Frontal Lobes. New York: Raven Press.Google Scholar
Stuss, D.T., & Gow, C.A. (forthcoming). Frontal dysfunction after head injury. Journal of Nervous and Mental Disease.Google Scholar
Taylor, A.E., Saint-Cyr, J.A., & Lang, A.E. (1986). Frontal lobe dysfunction in Parkinson's disease. Brain, 109, 845883.CrossRefGoogle ScholarPubMed
Terry, R. (1978). Aging, senile dementia, and Alzheimer's disease. In Katzman, R., Terry, R.D., & Beck, K.L. (Eds.), Alzheimer's Disease: Senile Dementia and Related Disorders (Vol. 7, pp. 1113). New York: Raven Press.Google Scholar
Warburton, J.W. (1967). Memory disturbance and the Parkinsonian syndrome. British Journal of Medical Psychology, 40, 169171.CrossRefGoogle Scholar
Wechsler, D. (1981). WAIS-R manual. Wechsler Adult Intelligence Scale—Revised. New York: Harcourt Brace Jovanovich.Google Scholar
Whitehouse, P.J. (1986). The concept of subcortical dementia: Another look. Annals of Neurology, 19, 16.CrossRefGoogle ScholarPubMed
Wilson, R.S., Kaszniak, A.W., Klawans, H.L., & Garron, D.C. (1980). High speed memory scanning in parkinsonism. Cortex, 16, 6772.CrossRefGoogle ScholarPubMed
Zung, W.W.K. (1965). A self-rating depression scale. Archives of General Psychiatry, 12, 6370.CrossRefGoogle ScholarPubMed