Published online by Cambridge University Press: 30 January 2020
Let ${\mathcal{A}}$ be a star-shaped polygon in the plane, with rational vertices, containing the origin. The number of primitive lattice points in the dilate
$t{\mathcal{A}}$ is asymptotically
$\frac{6}{\unicode[STIX]{x1D70B}^{2}}\text{Area}(t{\mathcal{A}})$ as
$t\rightarrow \infty$. We show that the error term is both
$\unicode[STIX]{x1D6FA}_{\pm }(t\sqrt{\log \log t})$ and
$O(t(\log t)^{2/3}(\log \log t)^{4/3})$. Both bounds extend (to the above class of polygons) known results for the isosceles right triangle, which appear in the literature as bounds for the error term in the summatory function for Euler’s
$\unicode[STIX]{x1D719}(n)$.
The first author was partially supported by ERC Advanced Research Grant no. 267165 (DISCONV) and by Hungarian National Science Grant K 111827. The second author was supported in part by a Natural Sciences and Engineering Research Council of Canada Discovery Grant. The fourth author was partially supported by ICERM, the Institute for Computational and Experimental Research in Mathematics, Brown University, and would like to thank the warm hospitality of the first author and the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.