Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T06:44:02.021Z Has data issue: false hasContentIssue false

Some results on the Flynn–Poonen–Schaefer conjecture

Published online by Cambridge University Press:  11 August 2021

Shalom Eliahou
Affiliation:
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville (LMPA), Université du Littoral Côte d’Opale, UR 2597, F-62100 Calais, France, and CNRS, FR2037, France e-mail: eliahou@univ-littoral.fr
Youssef Fares*
Affiliation:
LAMFA, CNRS-UMR 7352, Université de Picardie, 80039 Amiens, France, and CNRS, FR2037, France

Abstract

For $c \in \mathbb {Q}$ , consider the quadratic polynomial map $\varphi _c(z)=z^2-c$ . Flynn, Poonen, and Schaefer conjectured in 1997 that no rational cycle of $\varphi _c$ under iteration has length more than $3$ . Here, we discuss this conjecture using arithmetic and combinatorial means, leading to three main results. First, we show that if $\varphi _c$ admits a rational cycle of length $n \ge 3$ , then the denominator of c must be divisible by $16$ . We then provide an upper bound on the number of periodic rational points of $\varphi _c$ in terms of the number s of distinct prime factors of the denominator of c. Finally, we show that the Flynn–Poonen–Schaefer conjecture holds for $\varphi _c$ if $s \le 2$ , i.e., if the denominator of c has at most two distinct prime factors.

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, A. and Fares, Y., On two affine-like dynamical systems in a local field . J. Number Theory. 132(2012), 28922906.CrossRefGoogle Scholar
Benedetto, R., Preperiodic points of polynomials over global fields . J. Reine Angew. Math. 608(2007), 123153.Google Scholar
Call, G. and Goldstine, S., Canonical heights on projective space . J. Number Theory. 63(1997), 211243.CrossRefGoogle Scholar
Eliahou, S. and Fares, Y., Poonen’s conjecture and Ramsey numbers . Discrete Appl. Math. 209(2016), 102106.10.1016/j.dam.2015.07.038CrossRefGoogle Scholar
Fares, Y., On the iteration overof rational quadratic polynomials. Preprint, 2020. https://hal.archives-ouvertes.fr/hal-02534351/document Google Scholar
Flynn, E. V., Poonen, B., and Schaefer, E. F., Cycles of quadratic polynomials and rational points on a genus-2 curve . Duke Math. J. 90(1997), 435463.10.1215/S0012-7094-97-09011-6CrossRefGoogle Scholar
Morton, P., Arithmetic properties of periodic points of quadratic maps . Acta Arith. 62(1992), 343372.10.4064/aa-62-4-343-372CrossRefGoogle Scholar
Narkiewicz, W., Cycle-lengths of a class of monic binomials . Funct. Approx. Comment. Math. 42(2010), 2, 163168.10.7169/facm/1277811639CrossRefGoogle Scholar
Narkiewicz, W., On a class of monic binomials . Proc. Steklov Inst. Math. 280(2013), suppl. 2, S65S70.10.1134/S0081543813030073CrossRefGoogle Scholar
Northcott, D., Periodic points on an algebraic variety . Ann. of Math. (2). 51(1950), 167177.10.2307/1969504CrossRefGoogle Scholar
Pezda, T., Polynomial cycles in certain local domains . Acta Arith. 66(1994), 1122.10.4064/aa-66-1-11-22CrossRefGoogle Scholar
Poonen, B., The classification of rational preperiodic points of quadratic polynomials over: a refined conjecture. Math. Z. 228(1998), 1129.10.1007/PL00004405CrossRefGoogle Scholar
Silverman, J. H., The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, New York, 2007.CrossRefGoogle Scholar
Stoll, M., Rational 6-cycles under iteration of quadratic polynomials . LMS J. Comput. Math. 11(2008), 367380.10.1112/S1461157000000644CrossRefGoogle Scholar
Walde, R. and Russo, P., Rational periodic points of the quadratic function Qc = x 2 + c. Amer. Math. Monthly. 101(1994), 318331.Google Scholar
Zieve, M., Cycles of polynomial mappings. Ph.D. thesis, UC Berkeley, 1996.Google Scholar