Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T17:07:27.556Z Has data issue: false hasContentIssue false

Triangularization of Matrices and Polynomial Maps

Published online by Cambridge University Press:  18 September 2019

Yueyue Li
Affiliation:
College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China Email: a892691755@139.com
Yan Tian
Affiliation:
School of Mathematics, Liaoning Normal University, Dalian 116029, China Email: tiantian8835@163.com
Xiankun Du
Affiliation:
School of Mathematics, Jilin University, Changchun 130012, China Email: duxk@jlu.edu.cn

Abstract

We present conditions for a set of matrices satisfying a permutation identity to be simultaneously triangularizable. As applications of our results, we generalize Radjavi’s result on triangularization of matrices with permutable trace and results by Yan and Tang on linear triangularization of polynomial maps.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by NSF of China (No. 11771176). Corresponding author: Xiankun Du.

References

Bass, H., Connell, E. H., and Wright, D., The Jacobian Conjecture: Reduction of degree and formal expansion of the inverse. Bull. Amer. Math. Soc. 7(1982), no. 2, 287330. https://doi.org/10.1090/S0273-0979-1982-15032-7Google Scholar
Cheng, C. C., Cubic linear Keller maps. J. Pure Appl. Algebra 160(2001), no. 1, 1319. https://doi.org/10.1016/S0022-4049(00)00076-1Google Scholar
de Bondt, M., The strong nilpotency index of a matrix. Linear Multilinear Algebra 62(2014), no. 4, 486497. https://doi.org/10.1080/03081087.2013.784282Google Scholar
de Bondt, M. and van den Essen, A., The Jacobian Conjecture: Linear triangularization for homogeneous polynomial maps in dimension three. J. Algebra 294(2005), no. 1, 294306. https://doi.org/10.1016/j.jalgebra.2005.04.018Google Scholar
Dehghan, M. A. and Radjabalipour, M., Matrix algebras and Radjavi’s trace condition. Linear Algebra Appl. 148(1991), 1925. https://doi.org/10.1016/0024-3795(91)90083-9Google Scholar
Dixon, J. D. and Mortimer, B, Permutation groups. Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996. https://doi.org/10.1007/978-1-4612-0731-3Google Scholar
Guo, H., de Bondt, M., Du, X., and Sun, X., Polynomial maps with invertible sums of Jacobian matrices and directional derivatives. Indag. Math. 23(2012), no. 3, 256268. https://doi.org/10.1016/j.indag.2011.11.007Google Scholar
Hadwin, D., Radjavi’s trace condition for triangularizability. J. Algebra 109(1987), no. 1, 184192. https://doi.org/10.1016/0021-8693(87)90172-4Google Scholar
Liu, D., Du, X., and Sun, X., Quadratic linear Keller maps of nilpotency index three. Linear Algebra Appl. 429(2008), no. 1, 1217. https://doi.org/10.1016/j.laa.2008.01.032Google Scholar
Meisters, G. H. and Olech, C., Strong nilpotence holds in dimensions up to five only. Linear Multilinear Algebra 30(1991), no. 2, 231255. https://doi.org/10.1080/03081089108818109Google Scholar
Pate, K. and Cheng, C. C., Quadratic homogeneous Keller maps of rank two. Linear Algebra Appl. 476(2015), 1627. https://doi.org/10.1016/j.laa.2015.02.014Google Scholar
Putcha, M. S. and Yaqub, A., Semigroups satisfying permutation identities. Semigroup Forum 3(1971), no. 1, 6873. https://doi.org/10.1007/BF02572944Google Scholar
Radjavi, H., A trace condition equivalent to simultaneous triangularizability. Canad. J. Math. 38(1986), no. 2, 376386. https://doi.org/10.4153/CJM-1986-018-1Google Scholar
Radjavi, H. and Rosenthal, P., Simultaneous triangularization. Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-1200-3Google Scholar
Rusek, K., Linearly triangularizable quadratic endomorphisms. Linear Multilinear Algebra 64(2016), no. 8, 15271537. https://doi.org/10.1080/03081087.2015.1099601Google Scholar
Sun, X., On additive-nilpotency of Jacobian matrices of polynomial maps. Linear Algebra Appl. 439(2013), no. 12, 37463751. https://doi.org/10.1016/j.laa.2013.10.014Google Scholar
Sun, X., On the strong nilpotence problem. Algebra Colloq. 21(2014), no. 1, 117128. https://doi.org/10.1142/S100538671400008XGoogle Scholar
van den Essen, A., Polynomial automorphisms and the Jacobian conjecture. Progress in Mathematics, 190, Birkhäuser, Berlin, 2000. https://doi.org/10.1007/978-3-0348-8440-2Google Scholar
van den Essen, A. and Hubbers, E., Polynomial maps with strongly nilpotent Jacobian matrix and the Jacobian conjecture. Linear Algebra Appl. 247(1996), no. 6, 121132. https://doi.org/10.1016/0024-3795(95)00095-XGoogle Scholar
Watters, J. F., Block triangularization of algebras of matrices. Linear Algebra Appl. 32(1980), 37. https://doi.org/10.1016/0024-3795(80)90003-8Google Scholar
Yan, D. and Tang, G., The linear triangularizability of some Keller maps. Linear Algebra Appl. 438(2013), no. 9, 36493653. https://doi.org/10.1016/j.laa.2012.12.018Google Scholar
Yu, Jie-Tai, Bass, H., Connell, E. H., and Wright, D., On generalized strongly nilpotent matrices. Linear Multilinear Algebra 41(1996), no. 1, 1922. https://doi.org/10.1080/03081089608818457Google Scholar