Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-26T23:43:20.539Z Has data issue: false hasContentIssue false

Artin Approximation Compatible with a Change of Variables

Published online by Cambridge University Press:  20 November 2018

Goulwen Fichou
Affiliation:
IRMAR (UMR 6625), Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France e-mail: goulwen.fichou@univ-rennes1.fr e-mail: ronan.quarez@univ-rennes1.fr
Ronan Quarez
Affiliation:
IRMAR (UMR 6625), Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France e-mail: goulwen.fichou@univ-rennes1.fr e-mail: ronan.quarez@univ-rennes1.fr
Masahiro Shiota
Affiliation:
Graduate School of Mathematics, Nagoya University, Chikusa, Nagoya, 464-8602, Japan e-mail: shiota@math.nagoya-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose a version of the classical Artin approximation that allows us to perturb the variables of the approximated solution. Namely, it is possible to approximate a formal solution of a Nash equation by a Nash solution in a compatible way with a given Nash change of variables. This result is closely related to the so-called nested Artin approximation and becomes false in the analytic setting. We provide local and global versions of this approximation in real and complex geometry together with an application to the Right-Left equivalence of Nash maps.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Artin, M., On the solutions of analytic equations. Invent. Math. 5(1968), 277291. http://dx.doi.Org/10.1007/BF01389777 Google Scholar
[2] Coste, M., Ruiz, J. M., and Shiota, M., Approximation in compact Nash manifolds. Amer. J. Math. 117(1995), no. 4, 905927. http://dx.doi.Org/10.2307/2374953 Google Scholar
[3] Fichou, G. and Shiota, M., On almost blow-analytic equivalence. Proc. Lond. Math. Soc. (3) 103(2011), no. 4, 676709. http://dx.doi.org/!0.1112/plms/pdqO31 Google Scholar
[4] Frisch, J., Points de platitude d'un morphisme d'espaces analytiques complexes. Invent. Math. 4(1967), 118138. http://dx.doi.org/10.1007/BF01425245 Google Scholar
[5] Gabrielov, A. M., Formal relations between analytic functions. (Russian) Funkctional Anal. Prilozen 5(1971), no. 4, 6465.Google Scholar
[6] Lempert, L., Algebraic approximations in analytic geometry. Invent. Math. 121(1995), no. 2, 335353. http://dx.doi.Org/10.1007/BF01884302 Google Scholar
[7] Nash, J., Real algebraic manifolds. Ann. of Math. 56(1952), 405421. http://dx.doi.Org/10.2307/1969649 Google Scholar
[8] Popescu, D., Global Neron desingularisation. Nagoya Math. J. 100(1985), 97126.Google Scholar
[9] Rond, G., Artin approximation. arxiv:1506.04717Google Scholar
[10] Shiota, M., Nash manifolds. Lecture Notes in Mathematics, 1269, Springer-Verlag, Berlin, 1987.Google Scholar
[11] Shiota, M., Analytic and Nash equivalence relations of Nash maps. Bull. Lond. Math. Soc. 42(2010), no. 6, 10551064. http://dx.doi.Org/10.1112/blms/bdqO64 Google Scholar
[12] Spivakovsky, M., A new proofofD. Popescu's theorem on smoothing of ring homomorphisms. J. Amer. Math. Soc. 12(1999), no. 2, 381444. http://dx.doi.Org/10.1090/S0894-0347-99-00294-5 Google Scholar
[13] Teissier, B., Resultats recents sur Vapproximation des morphismes en algebre commutative d'apres Artin, Popescu et Spivakovsky. Seminaire Bourbaki, 1993/94, Asterisque 784(1994), 259282.Google Scholar