Published online by Cambridge University Press: 12 December 2019
The Assouad dimension of a metric space determines its extremal scaling properties. The derived notion of the Assouad spectrum fixes relative scales by a scaling function to obtain interpolation behaviour between the quasi-Assouad and the box-counting dimensions. While the quasi-Assouad and Assouad dimensions often coincide, they generally differ in random constructions. In this paper we consider a generalised Assouad spectrum that interpolates between the quasi-Assouad and the Assouad dimension. For common models of random fractal sets, we obtain a dichotomy of its behaviour by finding a threshold function where the quasi-Assouad behaviour transitions to the Assouad dimension. This threshold can be considered a phase transition, and we compute the threshold for the Gromov boundary of Galton–Watson trees and one-variable random self-similar and self-affine constructions. We describe how the stochastically self-similar model can be derived from the Galton–Watson tree result.
The author was initially supported by NSERC Grants 2014-03154 and 2016-03719, and the University of Waterloo.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.