Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T11:59:29.768Z Has data issue: false hasContentIssue false

Bi-Positive Sequences the Bilateral Moment Problem

Published online by Cambridge University Press:  20 November 2018

Jaime Vinuesa
Affiliation:
Dpto. de Teoría de Funciones Facultad de Ciencias Santander, Spain
Rafael Guadalupe
Affiliation:
Dpto. de Teoría de Funciones Facultad de Ciencias Santander, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We pose a “moment problem” in a more general setting than the classical one. Then we find a necessary and sufficient condition for a sequence to have a solution of the “problem“

where σ is a “distribution function”.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1986

References

1. Akhiezer, N. I., The Classical Moment Problem, Univ. Math. Monog., Oliver & Boyd Ltd. (1965).Google Scholar
2. Chihara, T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach — Science Publishers (1978).Google Scholar
3. Freud, G., Orthogonal Polynomials, Pergamon Press (1971).Google Scholar
4. Jones, W. B. and Thron, W. J., Continued Fractions, Encyclopedia of Mathematics and its applications, vol. 11, Addison-Wesley (1980).Google Scholar
5. Jones, W. B., Thron, W. J. and Waadeland, H., A Strong Stieltjes Moment Problem, Trans. Am. Math. Soc. (1980). pp. 503-528.Google Scholar
6. Shohat, J. A. and Tamarkin, J. D., The Problem of Moments, Am. Math. Soc. — Revised Edition (1963).Google Scholar