Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T06:07:07.103Z Has data issue: false hasContentIssue false

Cliquishness and Quasicontinuity of Two-Variable Maps

Published online by Cambridge University Press:  20 November 2018

A. Bouziad*
Affiliation:
Département de Mathématiques, Université de Rouen, UMR CNRS 6085, Saint-Étienne-du-Rouvray, France e-mail: ahmed.bouziad@univ-rouen.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the existence of continuity points for mappings $f\,:\,X\,\times \,Y\,\to \,Z$ whose $x$-sections $Y\,\backepsilon \,y\,\to \,f\left( x,y \right)\,\in \,Z$ are fragmentable and $y$-sections $X\,\backepsilon \,x\,\to \,f\left( x,y \right)\,\in \,Z$ are quasicontinuous, where $X$ is a Baire space and $Z$ is a metric space. For the factor $Y$, we consider two infinite “point-picking” games ${{G}_{1}}\,\left( y \right)$ and ${{G}_{2}}\,\left( y \right)$ defined respectively for each $y\,\in \,Y$ as follows: in the $n$-th inning, Player I gives a dense set ${{D}_{n}}\,\subset \,Y$, respectively, a dense open set ${{D}_{n}}\,\subset \,Y$. Then Player II picks a point ${{y}_{n}}\,\in \,{{D}_{n}}$; II wins if $y$ is in the closure of $\left\{ {{y}_{n}}\,:\,n\,\in \,\mathbb{N} \right\}$, otherwise I wins. It is shown that (i) $f$ is cliquish if II has a winning strategy in ${{G}_{1}}\,\left( y \right)$ for every $y\,\in \,Y$, and (ii) $f$ is quasicontinuous if the $x$-sections of $f$ are continuous and the set of $y\,\in \,Y$ such that II has a winning strategy in ${{G}_{2}}\,\left( y \right)$ is dense in $Y$. Item (i) extends substantially a result of Debs and item (ii) indicates that the problem of Talagrand on separately continuous maps has a positive answer for a wide class of “small” compact spaces.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2013

References

[1] Baire, R., Sur les fonctions de variables réelles. Ann. Mat. Pura Appl. 3 (1899), 1122.Google Scholar
[2] Berner, A. J. and Juhász, I. Point-picking games and HFDs. In: Models and Sets. Lecture Notes in Math. 1103. Springer, Berlin, 1984, pp. 5366.Google Scholar
[3] Bögel, K., Über die Stetigkeit und die Schwankung von Funktionen zweier reeller Veränderlichen. Math. Ann. 81 (1920), no. 1, 6493. http://dx.doi.org/10.1007/BF01563621 Google Scholar
[4] Bögel, K., Über partiell differenzierbare Funktionen. Math. Z. 25 (1926), no. 1, 490498. http://dx.doi.org/10.1007/BF01283851 Google Scholar
[5] Borwein, J. M. and Moors, WB., Non-smooth analysis, optimisation theory and Banach space theory. In: Open Problems in Topology. II. Elsevier, Amsterdam, 2007, pp. 549559.Google Scholar
[6] Bouziad, A. and Troallic, J.-P., Lower quasicontinuity, joint continuity and related concepts. Topology Appl. 157 (2010), no. 18, 28892894. http://dx.doi.org/10.1016/j.topol.2010.10.004 Google Scholar
[7] Debs, G., Fonctions séparément continues et de première classe sur un espace produit. Math. Scand. 59 (1986), no. 1, 122130.Google Scholar
[8] Ewert, J., On cliquishness of maps of two variables. Demonstratio Math. 35 (2002), no. 3, 657670.Google Scholar
[9] Fudali, L. A., On cliquish functions on product spaces. Math. Slovaca 33 (1983), no. 1, 5358.Google Scholar
[10] Gruenhage, G., Infinite games and generalizations of first-countable spaces. General Topology and Appl. 6 (1976), no. 3, 339352. http://dx.doi.org/10.1016/0016-660X(76)90024-6 Google Scholar
[11] Hodel, R., Cardinal functions. I. In: Handbook of Set-Theoretic Topology. North-Holland, Amsterdam, 1984, pp. 161.Google Scholar
[12] Jayne, J. E., Orihuela, J. J., Pallarés, A. J., and Vera, G., σ-fragmentability of multivalued maps and selection theorems. J. Funct. Anal. 117 (1993), no. 2, 243273. http://dx.doi.org/10.1006/jfan.1993.1127 Google Scholar
[13] Juhász, I. and Shelah, S. π(X) = δ(X) for compact X. Topology Appl. 32 (1989), no. 3, 289294. http://dx.doi.org/10.1016/0166-8641(89)90035-7 Google Scholar
[14] Kempisty, S., Sur les fonctions quasi-continues. Fund. Math. 19 (1932), 184197.Google Scholar
[15] Koumoullis, G., A generalization of functions of the first class. Topology Appl. 50 (1993), no. 3, 217239. http://dx.doi.org/10.1016/0166-8641(93)90022-6 Google Scholar
[16] Maslyuchenko, V. K. and Nesterenko, V. V, Joint continuity and quasicontinuity of horizontally quasicontinuous mappings. (Ukrainian) Ukra¨ın. Mat. Zh. 52 (2000), no. 12, 17111714; translation in Ukrainian Math. J. 52 (2000), no. 12, 19521955.Google Scholar
[17] Neubrunn, T., Quasi-continuity. Real Anal. Exchange 14 (1988/89), no. 2, 259306.Google Scholar
[18] Oxtoby, J. O., The Banach-Mazur game and Banach category theorem. In: Contributions to the Theory of Games, Vol. 3, Annals of Mathematics Studies 39. Princeton University Press, Princeton, NJ, 1957, pp. 159163.Google Scholar
[19] Piotrowski, Z., Quasicontinuity and product spaces In: Proceedings of the International Conference on Geometric Topology. PWN,Warsaw, 1978, pp. 349352.Google Scholar
[20] Šapirovskĭ, B. E., Canonical sets and character. Density and weight in bicompacta. (Russian) Dokl. Akad. Nauk SSSR 218 (1974), 5861.Google Scholar
[21] Šapirovskĭ, B. E., Onπ-character andπ-weight of compact Hausdorff spaces. Soviet Math. Dokl. 16 (1975) 9991004.Google Scholar
[22] Šapirovskĭ, B. E., Mappings onto Tihonov cubes. Uspekhi Mat. Nauk 35 (1980), no. 3, 122130; translation in Russian Math. Surveys 35 (1980), no. 3, 145156.Google Scholar
[23] Scheepers, M., Combinatorics of open covers. IV. Selectors for sequences of dense sets. Quaest. Math. 22 (1999), 109130. http://dx.doi.org/10.1080/16073606.1999.9632063 Google Scholar
[24] Scheepers, M., Topological games and Ramsey theory. In: Open Problems in Topology II-edited by E. Pearl, 2007 Elsevier, 6189.Google Scholar
[25] Talagrand, M., Espaces de Baire et espaces de Namioka. Math. Ann. 270 (1985), no. 2, 159164. http://dx.doi.org/10.1007/BF01456180 Google Scholar
[26] Thielman, H. P., Types of functions. Amer. Math. Monthly 60 (1953), 156161. http://dx.doi.org/10.2307/2307568 Google Scholar