We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove the equivalence of three definitions given by different comparison relations for infiniteness of positive elements in simple ${{C}^{*}}$-algebras.
[1] Blackadar, B., K-theory for operator algebras. Mathematical Sciences Research Institute Publications, 5, Springer-Verlag, New York, 1986.Google Scholar
2
[2] Blackadar, B. and Cuntz, J., The structure of stable algebraically simple C*-algebras. Amer. J. Math.104(1982), no. 4, 813–822. doi:10.2307/2374206Google Scholar
[6] Cuntz, J., K-theory for certain C*-algebras. Ann. of Math.113(1981), no. 1, 181–197. doi:10.2307/1971137Google Scholar
7
[7] Elliott, G. A. and Fang, X., Simple inductive limits of C*-algebras with building blocks from spheres of odd dimension. In: Operator algebra and operator theory, Contemp. Math., 228, American Mathematical Society, Providence, RI, 1998, pp. 79–86.Google Scholar
8
[8] Fang, X., The invariant continuous-trace C*-algebras by the actions of compact abelian groups. Chinese Ann. of Math.(B)19(1998), no. 4, 489–498.Google Scholar
9
[9] Fang, X., The simplicity and real rank zero property of the inductive limit of continuous trace C*-algebras. Analysis19(1999), no. 4, 377–389.Google Scholar
10
[10] Fang, X., Graph C*-algebras and their ideals defined by Cuntz–Krieger family of possibly row-infinite directed graphs. Integral Equations Operator Theory54(2006), no. 3, 301–316. doi:10.1007/s00020-004-1363-zGoogle Scholar
11
[11] Fang, X., The real rank zero property of crossed product. Proc. Amer. Math. Soc.134(2006), no. 10, 3015–3024. doi:10.1090/S0002-9939-06-08357-2Google Scholar
12
[12] Kirchberg, E. and Rørdam, M., Infinite non-simple C*-algebras: absorbing the Cuntz algebra
. Adv. Math.167(2002), no. 2, 195–264. doi:10.1006/aima.2001.2041Google Scholar
13
[13] Lin, H., An introduction to the classification of amenable C*-algebras.World Scientific Publishing Co., Inc., River Edge, NJ, 2001.Google Scholar
14
[14] Lin, H., Classification of simple C*-algebras and higher dimensional noncommutative tori. Ann. of Math.157(2003), no. 2, 521–544. doi:10.4007/annals.2003.157.521Google Scholar
15
[15] Lin, H. and Zhang, S., On infinite simple C*-algebras. J. Funct. Anal.100(1991), no. 1, 221–231. doi:10.1016/0022-1236(91)90109-IGoogle Scholar
16
[16] Pedersen, G. K., C*-algebras and their automorphism groups. London Mathematical Society Monographs, 14, Academic Press, London–New York, 1979.Google Scholar
17
[17] Rørdam, M., Ideals in the multiplier algebra of a stable C*-algebra. J. Operator Theory25(1991), no. 2, 283–298.Google Scholar
18
[18] Rørdam, M., On the structure of simple C*-algebras tensored with a UHF-algebra. II. J. Funct. Anal.107(1992), no. 2, 255–269. doi:10.1016/0022-1236(92)90106-SGoogle Scholar
19
[19] Rørdam, M., A simple C*-algebra with a finite and an infinite projection. Acta Math.191(2003), no. 1, 109–142. doi:10.1007/BF02392697Google Scholar
20
[20] Toms, A. S., On the classification problem for nuclear C*-algebras. Ann. of Math.167(2008), no. 3, 1029–1044. doi:10.4007/annals.2008.167.1029Google Scholar