Published online by Cambridge University Press: 20 November 2018
Given a domain D in R” and two specified points P0 and P1 in D we consider the problem of minimizing u(p1) over all functions harmonic in D with values between 0 and 1 normalised by the requirement u(P0) = 1/2. We show that when D is suitably regular the problem has a unique solution u* which necessarily takes on boundary values 0 or 1 almost everywhere on the boundary. In the process we prove that it is possible to separate P0 and P1by a harmonic function whose boundary value is supported in an arbitrary set of positive measure. These results depend on the fact that (under suitable regularity conditions) a harmonic function which vanishes on an open subset of the boundary has a normal derivative which is almost everywhere non-vanishing in that set.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.