Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T04:44:03.139Z Has data issue: false hasContentIssue false

On Open Book Embedding of Contact Manifolds in the Standard Contact Sphere

Published online by Cambridge University Press:  18 December 2019

Kuldeep Saha*
Affiliation:
Chennai Mathematical Institute, Chennai, India Email: kuldeep@cmi.ac.in

Abstract

We prove some open book embedding results in the contact category with a constructive approach. As a consequence, we give an alternative proof of a theorem of Etnyre and Lekili that produces a large class of contact 3-manifolds admitting contact open book embeddings in the standard contact 5-sphere. We also show that all the Ustilovsky $(4m+1)$-spheres contact open book embed in the standard contact $(4m+3)$-sphere.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

During this work, the author was supported by the National Board of Higher Mathematics, DAE, Govt. of India (grant no. 2/39(18)/2013/R and D/15916).

References

Alexander, J., A lemma on systems of knotted curves. Proc. Nat. Acad. Sci. 9(1923), 9395.CrossRefGoogle ScholarPubMed
Auroux, D., Asymptotically homomorphic families of symplectic submanifolds. Geom. Funct. Anal. 7(1997), 971995. https://doi.org/10.1007/s000390050033CrossRefGoogle Scholar
Casals, R. and Etnyre, J. B., Non-simplicity of isocontact embeddings in all higher dimensions. arxiv:1811.05455Google Scholar
Casals, R. and Murphy, E., Contact topology from the loose viewpoint. In: Proceedings of 22nd Gökova Geometry-Topology Conference, 2015, Gökova Geometry/Topology Conference (GGT), Gökova, 2016, pp. 81115.Google Scholar
Casals, R., Murphy, E., and Presas, F., Geometric criteria for overtwistedness. J. Amer. Math. Soc. 32(2019), 563604.CrossRefGoogle Scholar
Casals, R., Pancholi, D., and Presas, F., The Legendrian Whitney trick. arxiv:1908.04828Google Scholar
Ding, F., Geiges, H., and Van Koert, O., Diagrams for contact 5-manifolds. J. Lond. Math. Soc. 86(2012), no. 3, 657682. https://doi.org/10.1112/jlms/jds020CrossRefGoogle Scholar
Etnyre, J., Lectures on open book decompositions and contact structures. In: Floer homology, gauge theory, and low-dimensional topology. Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI, 2006, pp. 103141.Google Scholar
Etnyre, J. B. and Furukawa, R., Braided embeddings of contact 3-manifolds in the standard contact 5-sphere. J. Topology 10(2017), 412446. https://doi.org/10.1112/topo.12014CrossRefGoogle Scholar
Etnyre, J. and Lekili, Y., Embedding all contact 3-manifolds in a fixed contact 5-manifold. J. Lond. Math. Soc. 99(2019), 5268. https://doi.org/10.1112/jlms.12164CrossRefGoogle Scholar
Farb, B. and Margalit, D., A primer on mapping class groups. Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012.Google Scholar
Geiges, H., An introduction to contact topology. Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008. https://doi.org/10.1017/CBO9780511611438CrossRefGoogle Scholar
Giroux, E., Géométrie de contact: de la dimension trois vers les dimensions supérieures. In: Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 405414.Google Scholar
Honda, K. and Huang, Y., Convex hypersurface theory in contact topology. arxiv:1907.06025Google Scholar
Johnson, D., The structure of the Torelli group. I. Ann. of Math. 118(1983), 423442.CrossRefGoogle Scholar
Kasuya, N., On contact embeddings of contact manifolds in the odd dimensional Euclidan spaces. Internat. J. Math. 26(2015), 1550045. https://doi.org/10.1142/S0129167X15500457Google Scholar
Kasuya, N., An obstruction for co-dimension two contact embeddings in the odd dimensional Euclidean spaces. J. Math. Soc. 68(2016), 737743. https://doi.org/10.2969/jmsj/06820737Google Scholar
Van Koert, O. and Niederkrüger, K., Open book decompositions for contact structures on Brieskorn manifolds. Proc. Amer. Math. Soc. 133(2005), 36793686. https://doi.org/10.1090/S0002-9939-05-07944-XCrossRefGoogle Scholar
van Koert, O., Lecture notes on stabilization of contact open books. Münster J. Math. 10(2017), no. 2, 425455. https://doi.org/10.17879/70299609615Google Scholar
Lawson, T., Open book decomposition for odd dimensional manifolds. Topology 17(1979), 189192. https://doi.org/10.1016/S0040-9383(78)90024-1CrossRefGoogle Scholar
Martinez Torres, D., Contact embeddings in standard contact spheres via approximately holomorphic geometry. J. Math. Sci. Univ. Tokyo 18(2011), 139154.Google Scholar
Mori, A., Global models of contact forms. J. Math. Sci. Univ. Tokyo 11(2004), 447454.Google Scholar
Pancholi, D. M. and Pandit, S., Iso-contact embeddings of manifolds in co-dimension 2. 2018. arxiv:1808.04059Google Scholar
Pancholi, D. M., Pandit, S., and Saha, K., Embeddings of 3-manifolds via open books. 2018. arxiv:1806.09784 2018.Google Scholar
Quinn, F., Open book decompositions and the bordism of automorphisms. Topology 18(1979), 5573. https://doi.org/10.1016/0040-9383(79)90014-4CrossRefGoogle Scholar
Tamura, I., Spinnable structures on differentiable manifolds. Proc. Japan Acad. 48(1972), 293296.CrossRefGoogle Scholar
Thurston, W. P. and Winkelnkemper, H. E., On the existence of contact forms. Proc. Amer. Math. Soc. 52(1975), 345347. https://doi.org/10.2307/2040160CrossRefGoogle Scholar
Weinstein, A., Contact surgery and symplectic handlebodies. Hokkaido Math. J. 20(1991), 241251. https://doi.org/10.14492/hokmj/1381413841CrossRefGoogle Scholar
Winkelnkemper, H., Manifolds as open books. Bull. Amer. Math. Soc. 79(1973), 4551. https://doi.org/10.1090/S0002-9904-1973-13085-XCrossRefGoogle Scholar