Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-13T22:48:20.297Z Has data issue: false hasContentIssue false

The Quotient Problem for Entire Functions

Published online by Cambridge University Press:  26 October 2018

Ji Guo*
Affiliation:
Department of Mathematics, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan Email: s104021881@m104.nthu.edu.tw
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\{\mathbf{F}(n)\}_{n\in \mathbb{N}}$ and $\{\mathbf{G}(n)\}_{n\in \mathbb{N}}$ be linear recurrence sequences. It is a well-known Diophantine problem to determine the finiteness of the set ${\mathcal{N}}$ of natural numbers such that their ratio $\mathbf{F}(n)/\mathbf{G}(n)$ is an integer. In this paper we study an analogue of such a divisibility problem in the complex situation. Namely, we are concerned with the divisibility problem (in the sense of complex entire functions) for two sequences $F(n)=a_{0}+a_{1}f_{1}^{n}+\cdots +a_{l}f_{l}^{n}$ and $G(n)=b_{0}+b_{1}g_{1}^{n}+\cdots +b_{m}g_{m}^{n}$, where the $f_{i}$ and $g_{j}$ are nonconstant entire functions and the $a_{i}$ and $b_{j}$ are non-zero constants except that $a_{0}$ can be zero. We will show that the set ${\mathcal{N}}$ of natural numbers such that $F(n)/G(n)$ is an entire function is finite under the assumption that $f_{1}^{i_{1}}\cdots f_{l}^{i_{l}}g_{1}^{j_{1}}\cdots g_{m}^{j_{m}}$ is not constant for any non-trivial index set $(i_{1},\ldots ,i_{l},j_{1},\ldots ,j_{m})\in \mathbb{Z}^{l+m}$.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

References

Borel, E., Sur les zéros des fonctions entières . Acta math. 20(1897), no. 1, 357396. https://doi.org/10.1007/BF02418037.Google Scholar
Corvaja, P. and Zannier, U., Finiteness of integral values for the ratio of two linear recurrences . Invent. math. 149(2002), no. 2, 431451. https://doi.org/10.1007/s002220200221.Google Scholar
Green, M., Some Picard theorems for holomorphic maps to algebraic varieties . Amer. J. Math. 97(1975), no. 1, 4375. https://doi.org/10.2307/2373660.Google Scholar
Guo, J. and Wang, J.T.-Y., Asymptotic gcd and divisible sequences for entire functions . Trans. Amer. Math. Soc., to appear.Google Scholar
Lang, S., Introduction to complex hyperbolic spaces . Springer-Verlag, New York, 1987. https://doi.org/10.1007/978-1-4757-1945-1.Google Scholar
Pasten, H. and Wang, J.T.-Y., GCD Bounds for analytic functions . Int. Math. Res. Not. IMRN (2017), no. 1, 4795. https://doi.org/10.1093/imrn/rnw028.Google Scholar
van der Poorten, A. J., Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles . C. R. Acad. Sci. Paris 302(1988), 97102.Google Scholar
Ru, M., Nevanlinna theory and its relation to Diophantine approximation . World Scientific, Publishing Co., Inc., River Edge, NJ, 2001. https://doi.org/10.1142/9789812810519.Google Scholar
Rumely, R., Notes on van der Poorten’s proof of the Hadamard quotient theorem . In: Séminaire de Théorie des Nombres, Paris 1986–87 , Progr. Math., 75, Birkhäuser Boston, Boston, MA, 1988, pp. 349409.Google Scholar
Vojta, P., On Cartan’s theorem and Cartan’s conjecture . Amer. J. Math. 119(1997), no. 1, 117.Google Scholar
Vojta, P., Diophantine approximation and Nevanlinna theory . In: Arithmetic geometry , Lecture Notes in Mathematics, 2009, Springer-Verlag, Berlin, 2011, pp. 111224. https://doi.org/10.1007/978-3-642-15945-9_3.Google Scholar
Zannier, U., Diophantine equations with linear recurrences. An overview of some recent progress . J. Théor. Nombres Bordeaux 17(2005), 423435.Google Scholar