Published online by Cambridge University Press: 20 November 2018
Let V be a vector space of dimension n over a field k of characteristic p. Let G ⊆ Gl(V) be a finite group with p-Sylow subgroup P. G and P act on the symmetric algebra R of V. Denote the respective rings of invariants by RG and Rp. We show that if Rp is Cohen-Macaulay (CM) so also is RG, generalizing a result of M. Hochster and J. A. Eagon. If P is normal in G and G is generated by P and pseudo-reflections, we show that if RG is CM so also is Rp. However, in general, RG may even be polynomial with Rp not CM. Finally, we give a procedure for determining a set of generators for RG given a set of generators for Rp.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.