Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T20:39:08.023Z Has data issue: false hasContentIssue false

Acid activation of a Spanish sepiolite: physico-chemical characterization, free silica content and surface area of products obtained

Published online by Cambridge University Press:  09 July 2018

M. A. Vicente Rodriguez
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Senda del Rey s/n, 28040 Madrid, Spain Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
J. DE D. Lopez Gonzalez
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Senda del Rey s/n, 28040 Madrid, Spain
M. A. Bañares Muñoz
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain

Abstract

A sepiolite from Vallecas (Spain) was treated with solutions of HC1 (1.25, 2.5, 5.0, 10.0 and 20.0 wt%) at 25°C for 2, 6, 24 and 48 h, respectively. The resulting solids were characterized by XRD, FT-IR and thermal analyses, along with SEM, TEM and nitrogen adsorption isotherms at 77 K. The free silica was digested and determined in all samples. Several samples were seen to have specific surface areas up to 450 m2/g, with a maximum value of 549 m2/g in the sample treated with 1.25 wt% HCl for 48 h. A sudden decrease in specific surface areas was observed when free silica was digested.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bañares Muñoz, M.A. & Del Arco Sanchez, M. (1989a) Estudio de la interacción de sepiolita de Vallecas con DDT. I. Caracterización de la sepiolita por difracción de rayos X, anáilisis térmico diferencial, espectroscopía IR y adsorción de nitrógeno a baja temperatura. Agrochi-mica, XXXIII, 15-23.Google Scholar
Bañares Muñoz, M.A. & Del Arco Sanchez, M. (1989b) Estudio de la interacción de sepiolita de Vallecas con DDT. II. ‘Paráimetros termodinámicos para la adsorción de DDT sobre sepiolita.’ Agrochimica, XXXIII, 267-274.Google Scholar
Bonilla, J.L., Lopez Gonzaeez, J. De D., Ramirez Saenz, A., Rodriguez Reinoso, F. & Valenzuela Calahorro, C. (1981) Activation of a sepiolite with dilute solutions of NO3H and subsequent heat treatments: II. Determination of surface acid centres. Clay Miner. 16, 173179.CrossRefGoogle Scholar
Brauner, K. & Preisinger, A. (1956) Struktur und Entste-hungdes sepioliths. Tschhermarks Min. Pert. Mitt. 6, 120140.Google Scholar
Caillere, S., Henin, S. & Rautureau, M. (1982) Minéralogie des argiles, Vol. 1 et 2. INRA et Masson, Paris.Google Scholar
Campelo, J.M., Garcia, A., Luna, D., & Marinas, J.M. (1987) Catalytic activity of natural sepiolites in cyclohex-ene skeletal isomerization. Clay Miner. 22, 233236.CrossRefGoogle Scholar
Cetisli, H. & Gedikbey, T. (1990) Dissolution kinetics of sepiolite from Eskisehir (Turkey) in hydrochloric and nitric acids. Clay Miner. 25, 207215.CrossRefGoogle Scholar
Charlot, G. (1966) Les Méthodes de la Chimie Analytique. Analyse Quantitative Mindrale. (Masson and Cie, editors). Paris.Google Scholar
Cornejo, J, & Hermosin, M.C. (1986) Efecto de la temperatura en la acidez superficial del producto obtenido por tratamiento ácido de sepiolita. Bol. Soc. Esp. Miner. 9, 15138.Google Scholar
Fernandez Alvarez, T. (1970) Superficie específica y estructura de poro de la sepiolita calentada a diferentes temperaturas. Proc. Reunión Hispano-Belga de Miner-ales de la Arcilla, Madrid, 202-209.Google Scholar
Fernandez Aevarez, T. (1972) Activación de sepiolita con ácido clorhídrico. Bol. Soc. Esp. Ceram. Vidr. 11, 365374.Google Scholar
Fernandez Alvarez, T. (1978) Efecto de la deshidratación sobre las propiedades adsorbentes de la palygorskita y sepiolita. Clay Miner. 3, 325335.Google Scholar
Gonzalez, L, Ibarra, L.M., Rodriguez, A., Moya, J.J. & Valle, F.J. (1984) Fibrous silica gel obtained from sepiolite by HCl attack. Clay Miner. 19, 9398.Google Scholar
Gregg, S.J. & Sing, K.S.W. (1982) Adsorption, Surface Area and Porosity. Second Printing. Academic Press, London & New York.Google Scholar
Grim, R.E. (1962) Applied Clay Mineralogy, pp. 307318. McGraw-Hill Book Co. Inc., London.Google Scholar
Jimenez Lopez, A., Lopez Gonzalez, J. De D., Ramirez Saenz, A., Rodriguez Reinoso, F., Valenzuela Calahorro, C. & Zurita Herrera, L. (1978) Evolution of surface area in a sepiolite as a function of acid and heat treatments. Clay Miner. 13, 375385.Google Scholar
Jones, B.F. & Galan, E. (1988) Sepiolite and palygorskite. Rev. Miner. 19, 631674.Google Scholar
Lopez Gonzalez, J. De D., Ramirez Saenz, A., Rodriguez Reinoso, F., Valenzuela Calahorro, C. & Zurita Herrera, L. (1981) Activación de una sepiolita con disoluciones diluidas de NO3H y posteriores tratamientos térmicos: I. Estudio de la supefficie específica. Clay Miner. 16, 103113.Google Scholar
Pesquera, C., Gonzalez, F., Benito, I., Beanco, C., Mendioroz, S. & Pajares, J. (1992) Passivation of a montmorillonite by the silica created in acid activation. J. Mater. Chem. 2, 907911.Google Scholar
Rautureau, M. & Mifsud, A. (1977) Etude par microscope életronique des differents états d'hydratation de la sépiolite. Clay Miner. 12, 309318.Google Scholar
Ross, C.S. & Hendricks, S.B. (1945) Minerals of the montmorillonite group; their origin and relation to soils and clays. Prof. Pap. U.S. Geol. Surv. 205-B, 2379.Google Scholar
Suárez, M., Flores, L.V. & Martin Pozas, J.M. (1992) Textural study of palygorskite by acid treatment. Abstracts Mediterranean Clay Meeting M.C.M.'92; Lipari (Italy). 132-133.Google Scholar
Sugiura, M., Hayashi, H. & Suzuki, T. (1991) Adsorption of ammonia by sepiolite in ambient air. Clay Sci. 8, 87100.Google Scholar