Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-11T15:23:11.324Z Has data issue: false hasContentIssue false

An ideal solid solution model for calculating solubility of clay minerals

Published online by Cambridge University Press:  09 July 2018

Y. Tardy
Affiliation:
Laboratorie de Pédologie et de Géochimie, 38, rue des Trente Six Ponts, 31078 Toulouse
B. Fritz
Affiliation:
Centre de Sédimentologie et de Géochimie de la Surface, 1, rue Blessig, 67084 Strasbourg, France

Abstract

A method for estimating Gibbs free energies and stabilities of clay minerals is proposed for use with computer programs aimed at calculating the chemical evolution of natural water-rock systems. This is based on (i) a model for ideal solid solutions of a large number of end-member compositions and (ii) a data set of estimated solubility products from 36 end-members. The application of the method to the production of experimental or natural clay stabilities is discussed.

Résumé

Résumé

Une méthode d'estimation de l'énergie libre de Gibbs et de la stabilité des minéraux argileux est proposée en vue de son utilisation dans les programmes d'ordinateurs déterminant l'évolution chimique des systèmes eau-roches naturels. On présente d'abord un modèle pour des solutions solides idéales d'un grand nombre de constituants puis on propose un ensemble de produits de solubilité estimés pour 36 constituants. Finalement on discute de l'application de la méthode à la prévision des stabilités des argiles dans la nature ou dans les conditions expérimentales.

Kurzreferat

Kurzreferat

Zur Abschätzung von freien Gibbs Energien und Stabilitäten von Tonmineralen mit Computerprogrammen wird eine Methode zur Berechnung der chemischen Entwicklung natürlicher Wasser-Gesteins Systeme vorgestellt. Diese basiert auf: (a) einem Modell von idealen Mischkristallen aus einer großen Anzahl Endgliedzusammensetzungen und (b) einem Datensatz geschätzter Löslichkeitsprodukte von 36 Endgliedern. Es wird die Brauchbarkeit der Methode zur Vorhersage experimenteller oder natürlicher Tonstabilitäten erörtert.

Resumen

Resumen

Se propone un método para la estimación de las energías libres de Gibbs y de la estabilidad de los minerales de la arcilla para uso con programas de ordenador con el propósito de determinar la evolución química de los sistemas naturales rocagua. Está basado en (i) un modelo para soluciones sóidas ideales de un gran número de composiciones del miembro final de la serie y (ii) los productos de solubilidad de 36 miembros final de serie. Se discute la aplicación del método para la predicción de la estabilidad de arcillas naturales o sintéticas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagard, P., Helgeson, H.C. & Benson, L.V. (1981) Chemical and thermodynamic consequences of preferential site occupancy in montmorillonite, illites and mixed layer clays. Am. J. Sci. (in press).Google Scholar
Al-Droubi, A. (1976) Géochimie des sels et des solutions eoncentrées par évaporation. Modéle thermodynamique de simulation. Application aux sols salés du Tchad. Mém. Sci. Géol. Strasbourg, 46, 177 pp.Google Scholar
Carmouze, J.P. (1976) La régulation hydrogéochimique du Lac Tchad. Contribution d l'analyse biogéodynamique d'un systdée lacustre endoréique en milieu continental. Thése Doct. es-Sciences, Univ. Paris VI, 418 pp.Google Scholar
Carson, C.D., Kittrick, J.A., Dixon, J.B. & McKee, T.R. (1976) Stability of soil smectite from a Houston black clay. Clays Clay Miner. 24, 151155.CrossRefGoogle Scholar
Cimbalnikova, A. (1971) Chemical variability and structural heterogeneity of glauconites. Am. Miner. 56, 13851392.Google Scholar
Eugster, H.P. & Chou, I.M. (1973) The depositional environments of Precambrian banded iron formations. Econ. Geol. 68, 1144-1168.Google Scholar
Fritz, B. (1975) Etude thermodynamique et simulation des réactions entre minéraux et solutions. Application à la géochimie des altérations et des eaux continentales. Mém. Sci. Géol. Strasbourg, 41, 153 pp.Google Scholar
Fritz, B. & Tardy, Y. (1974) Prediction for mineralogical sequences in tropical soils by a theoretical dissolution model. Proe. Int. Syrup. Water-Rock Interactions, Prague, 409416.Google Scholar
Fritz, B. & Tardy, Y. (1976) Sequences de minéraux secondaires dans l'altération des granites et roches basiques; modéles thermodynamiques. Bull. Soe. geol. France, 18, 712.CrossRefGoogle Scholar
Gac, J.Y., Al-Droubi, A., Fritz, B. & Tardy, Y. (1977a) Geochemical behaviour of silica and magnesium during the evaporation of waters in Chad. Chem. Geol. 19, 215-228.Google Scholar
Gac, J.Y., Al-Droubi, A., Paquet, H., Fritz, B. & Tardy, Y. (1977b) Chemical model for origin and distribution of elements in salt and brines during evaporation of waters. Application to some saline Lakes of Tibesti, Chad Pp. 149158 in: Origin and Distribution of the Elements (Arhens, L. H., editor), Pergamon Press, Oxford.Google Scholar
Gar, J.Y. (1979) Géochimie du Bassin du Lac Tchad. Bilan de l'altération, de l'érosion et de la sédimentation. Thése Univ. Louis Pasteur, Strasbourg, 249 pp.Google Scholar
Garrels, R.M. & Thompson, M.E. (1962) A chemical model for sea water at 25°C and one atmosphere total pressure. Am. J. Sci. 260, 5766.Google Scholar
Garrels, R.M. & Christ, C.L. (1965) Solutions, Minerals and Equilibria. Harper & Row, London.Google Scholar
Helgeson, H.C. & Mackenzie, F.T. (1970) Silicate sea water equilibria in the ocean system. Deep Sea Res. 17, 877-892.Google Scholar
Helgeson, H.C., Delany, J.M., Nesbitt, H.W. & Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sei. 278A,1229.Google Scholar
Huang, W.H. & Keller, W.D. (1973) Gibbs free energies of formation calculated from dissolution data using specific mineral analyses. III clay minerals. Am. Miner. 58,10231028.Google Scholar
Karpov, Lk. & Kashik, S.A. (1968) Computer calculations of standard isobaric-isothermal potential of silicates by multiple regression from a crystallochemical classification. Geochem. Int. 5, 706713.Google Scholar
Kittrick, J.A. (1971a) Montmorillonite equilibria and the weathering environment. Proe. Soil Sci. Soc. Am. 35, 815830.Google Scholar
Kittrick, J.A. (1971b) Stability of montmorillonite: I. Belle Fourche and Clay Spur montmorillonites. Proc. Soil Sci. Soc. Am. 35,140145.Google Scholar
Kittrick, J.A. (197lc) Stability of montmorillonites: II. Aberdeen montmorillonite. Proe. Soil Sei. Soe. Am. 35, 815820.Google Scholar
Kittrick, J.A. (1973) Mica derived vermiculites as unstable intermediates. Clays Clay Miner. 21,479488.Google Scholar
Lemoalle, J. & Dupont, B. (1973) Iron-bearing oolites and the present conditions of iron sedimentation in Lake Chad (Africa). Pp. 167178 in: Ores in Sediments (Amstutz, G. C. & Bernard, A. J., editors).Google Scholar
Lippmann, F. (1977) The solubility products of complex minerals, mixed crystals and three-layer clay minerals. N. Jb. Miner. Abh. 130,243263.Google Scholar
Lippmann, F. (1979) Stabilitäisbeziehungen der Tonminerale. N. Jb. Miner. Abh. 136,287309.Google Scholar
Lippmann, F. (1980) Phase diagrams depicting aqueous solubility of binary mineral systems. N. Jb. Miner. Abh. 139,125.Google Scholar
Mackenzie, F.T., Garrels, R.M., Bricker, O.P. & Bickley, (1967) Silica in sea water, control by silica minerals. Science, 155,14041405.Google Scholar
Mattigod, S.V. & Sposito, G.(1978) Improved method for estimating the standard free energies of formation (ΔG°f, 298.15) of smectites. Geochim. Cosmochim. Acta, 42, 17531762.Google Scholar
Misra, U.K. & Upchurch, W.J. (1976) Free energy of formation of beidellite from apparent solubility measurements. Clays Clay Miner. 24, 327332.Google Scholar
Nahon, D. (1976) Cuirasses ferrugineuses et encroûfitements calcaires au Sénégal Occidental, en Mauritanie. Systémes èvolutifs, gèochimie, structures, relais et coexistence. Mdm. Sei. Géol., Strasbourg, 44, 232 pp.Google Scholar
Nriagu, J. (1975) Thermochemical approximations for clay minerals. Am. Miner. 60,834839.Google Scholar
Paquet, H. (1970) Evolution gûochimique des minûraux argileux dans les altûrations et les sols des climats mûditerranûens et tropicaux à saisons contrastûes. Mûm. Sev. Carte Gûol. Alsace Lorraine, 30,212 pp.Google Scholar
Parron, C., Nahon, D., Fritz, B., Paquet, H. & Millot, G. (1976) Dûsilicification et quartzification par altûration des grûs albiens du Gard. Modèles gûochimiques de genèse. Bull. Sci. Gûol., Strasbourg 29, 273-284.Google Scholar
Reesman, A.L. & Keller, W.D. (1968) Aqueous solubility studies of high alumina and clay minerals. Am. Miner. 53,929942.Google Scholar
Rouston, R.C. & Kittrick, J.A. (1971) Illite solubility. Proc. Soil Sci. Soc. Am. 35,714-718.Google Scholar
Stoessell, R.K. (1979) A regular solution site-mixing model for illites. Geochim. Cosmochim. Acta, 43, 11511159.Google Scholar
Tardy, Y. (1978) Relationships among Gibbs energies of formation of compounds. Am. J. Sci. 279,217224.Google Scholar
Tardy, Y., Cheverry, C. & Fritz, B. (1974a) Néoformation d'une argile magnésienne dans les dépressions interdunaires du Lac Tchad. Application aux domaines de stabilité des phyllosilicates alumineux, magnésiens et ferriféres. C.R. Acad. Sci. Paris, 178D,19992002.Google Scholar
Tardy, Y., Trescases, J.J. & Fritz, B. (1974b) Evaluation de l'enthalpie libre de formation de montmorillonites ferriféres. C.R. Acad. Sci. Paris, 178D,16651668.Google Scholar
Tardy, Y. & Garrels, R.M. (1974) A method for estimating the Gibbs energies of formation of layer-silicates. Geochim. Cosmochim. Acta, 38,11011116.CrossRefGoogle Scholar
Tardy, Y. & Garrels, R.M. (1976) Prediction of Gibbs energies of formation. I. Relationships among Gibbs energies of formation of hydroxides, oxides and aqueous ions. Geochim. Cosmochim. Acta 40, 10511056.CrossRefGoogle Scholar
Tardy, Y. & Garrels, R.M. (1977) Prediction of Gibbs energies of formation. If. Monovalent and divalent metal silicates. Geochim. Cosmochim. Acta, 41, 8792.CrossRefGoogle Scholar
Trescases, J.J. (1975) L'évolution géochimique supergène des roches ultra-basiques en zone tropicale. Formation des gisements nickelifères de Nouvelle Calédonie. Mém. ORSTOM Paris, 78, 259 pp.Google Scholar
Van Breemen, N. (1976) Genesis and solution chemistry of acid sulfate soils in Thailand. Center for Agricultural Publishing, Wageningen, 263 pp.Google Scholar
Weaver, R.M., Jackson, M.L. & Syers, J.K. (1971) Magnesium and silicon activities in matrix solutions of montmorillonite-containing soils in relation to clay mineral stability. Proc. Soil Sci. Soc. Am. 35, 823830.CrossRefGoogle Scholar
Weaver, R.M., Jackson, M.L. & Syers, J.K. (1976) Clay mineral stability as related to activities of aluminum silicon magnesium in matrix solution of montmorillonite containing soils. Clays Clay Miner. 24, 246252.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals, Elsevier, 213 pp.Google Scholar