Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T13:04:36.811Z Has data issue: false hasContentIssue false

Clay mineralogy of Galician coastal and oceanic surface sediments: contributions from terrigenous and authigenic sources

Published online by Cambridge University Press:  09 July 2018

M. J. Belzunce-Segarra*
Affiliation:
Macaulay Land Use Research Institute, CraigiebucklerAberdeen AB15 8QH, UK
M. J. Wilson
Affiliation:
Macaulay Land Use Research Institute, CraigiebucklerAberdeen AB15 8QH, UK
A. R. Fraser
Affiliation:
Macaulay Land Use Research Institute, CraigiebucklerAberdeen AB15 8QH, UK
E. Lachowski
Affiliation:
Department of Chemistry, University of Aberdeen, AB24 3UE, UK
D. M. L. Duthie
Affiliation:
Macaulay Land Use Research Institute, CraigiebucklerAberdeen AB15 8QH, UK

Abstract

The clay mineralogy of sediments collected from the San Simón inlet, the Ría de Vigo, the Galician Platform, the Galician Margin and the Celtic Sea has been studied using XRD, IR and TEM with a microanalytical attachment. All samples consisted largely of dioctahedral mica and kaolin minerals, in addition to significant amounts of gibbsite, chloritic and smectitic minerals. The clay mineralogy of the sediments is generally consistent with terrigenous inputs from soils and weathered rocks of the Galician granitic hinterland. It is of particular interest that gibbsite, which is not a common constituent of soils of temperate climates, has previously been shown to occur in weathering profiles in this region and may therefore be regarded as an indicator of ‘‘continentality’’, as suggested by Macías Vásquez and co-workers. The smectitic mineral is Fe-rich and also contains significant amounts of K. This mineral is likely to be ultimately of an authigenic origin and may possibly be important as a precursor mineral in a diffuse, non-granular glauconitization process.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aloisi, J.-C. & Monaco, A. (1975) La sédimentation infralittorale. Les prodeltas nord-méditerranéens. Comptes Rendus de l’Académie des Sciences, Paris,D, 264, 28332836.Google Scholar
Belzunce, M.J., Bacon, J.R., Prego, R. & Wilson, M.J. (1997) Chemical forms of heavy metals in surface sediments of the San Simón inlet, Ría de Vigo, Galicia. Journal of Environmental Science and Health, A32, 12711292.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer- Verlag, Berlin.Google Scholar
Chamley, H. (1993) La sédimentation marine des minéraux argileux. Pp. 217241 in: Sédimentologie et Géochimie de la Surface. Colloque à la mémoire de Georges Millot (Paquet, H. & Clauer, N., editors). Les colloques de l’Académie des Sciences et du Cadas, Institut de France.Google Scholar
Clauer, N., Keppens, E. & Stille, P. (1992) Strontium isotope constraints on the process of glauconitization. Geology, 20, 133136.2.3.CO;2>CrossRefGoogle Scholar
Cliff, G. & Lorimer, G.W. (1975) The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203207.Google Scholar
Duchaufour, P. (1977) Pedology: Pedogenesis and Classification (Translated by, T.R. Paton). George Allen & Unwin, London.Google Scholar
Edzwald, J.K. & O’Melia, C.R. (1975) Clay distributions in recent marine sediments. Clays and Clay Minerals, 23, 3944.Google Scholar
Farmer, V.C., McHardy, W.J., Elsass, F. & Robert, M. (1994) hk-ordering in alminous nontronite and saponite synthesized near 90°C: Effects of synthesis conditions on nontronite composition and ordering. Clay Minerals, 42, 180186.CrossRefGoogle Scholar
Gibbs, R.J. (1975) Clay segregation in the marine environment. Journal of Sedimentary Petrology, 47, 237243.Google Scholar
Griffin, J.J., Windom, H. & Goldberg, E.D. (1968) The distribution of clay minerals in the world ocean. Deep Sea Research, 15, 433439 Google Scholar
Hoffer, M., Person, A., Courtois, C., Karpoff, A.M. & Trauth, D. (1980) Sedimentology, mineralogy and geochemistry of green clay samples from hydrothermal deposits from holes 424, 424A, 424B and 424C (Galapagos Spreading Center). Pp. 339376 in. Initial Reports, Deep Sea Drilling Project, 54.Google Scholar
Honnerez, J., Karpoff, A. & Trauth-Badaut, D. (1983) Sedimentology, mineralogy and geochemistry of green clay samples from the Galapagos hydrothermal mounds, holes 506, 506C and 507D. Pp. 221224 in. Initial Reports, Deep Sea Drilling Project, 70.Google Scholar
Jacobs, M.B. and Ewing, M. (1969) Suspended particulate matter: concentration in the major oceans. Science, 163, 380383.Google Scholar
Johnson, L.R. (1979) Mineralogical dispersal patterns of North Atlantic deep sea sediments with particular reference to eolian dusts. Marine Geology, 29, 335345.Google Scholar
Karlin, R. (1980) Sediment sources and clay mineral distribution off the Oregon coast. Journal of Sedimentary Petrology, 50, 543560.Google Scholar
Karpoff, A.M. (1984) Miocene red clays of the South Atlantic: Dissolution facies of calcareous oozes at Deep Sea Drilling Project sites 516 to 523, Leg 73. Pp. 515535 in. Initial Reports, Deep Sea Drilling Project, 73.Google Scholar
Kastner, M. (1981) Authigenic silicates in deep-sea sediments: formation and diagenesis. Pp. 915980 in: The Sea (Emiliani, E., editor). Wiley & Sons, New York.Google Scholar
Koldijk, W.S. (1968) Bottom sediments of the Ría de Arosa (Galicia, NW Spain). Leidse geologische mededeelingen, 37, 77134.Google Scholar
Macías-Vázquez, F. (1981) Formation of gibbsite in soils and saprolites of temperate-humid zones. Clay Minerals, 16, 4352.Google Scholar
Macías-Vázquez, F. & Calvo de Anta, R. (1988) Arcillas y limos de sedimentos actuales de las Rías de Galicia. Consideraciones geneticas. Geo. Sci. Aveiro, 3, 179187.Google Scholar
Macías-Vázquez, F., García-Rodeja Gayoso, E., Guitian Rivera, F. & Puga Pereira, M. (1980) Origen y distribución de la gibbsita en Galicia. Annales Edafología y Agrobiología 39, 15331563.Google Scholar
Macías-Vázquez, F., García Paz, C. & García-Rodeja Gayoso, E. (1982) Mineralogía de las arcillas en suelos y alteraciones sobre materiales graníticos de Galicia. Cuadernos Laboratorio Xeoloxico Laxe, 83, 387412.Google Scholar
Macías-Vázquez, F., Fernández de Landa, J.L.A. & Calvo de Antes, R. (1991) Composición química y mineralo ´gica de biodepósitos bajo bateas de mejillón. Datos para la evaluación de su uso como fertilizante y/o enmendante de suelos de Galicia. Thalassas, 9, 2329.Google Scholar
Michalopoulos, P. & Aller, R.C. (1995) Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science, 270, 614617.Google Scholar
Monaco, A. (1971) Contributions à l’étude géologiques et sédimentologiques du plateau continental du Rousillon (Golfe du Lion). Thèse. Sci Nat. , Montpellier, France.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical composition of clays. Pp. 1128 in. Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph, 6. Mineralogical Society, London.Google Scholar
Nombela, M.A., Vilas, F. & Evans, G. (1995) Sedimentation in the mesotidal Rías Bajas of Galicia (north westhern Spain). Ensenada de San Simón, Inner Ría de Vigo. International Association of Sedimentology, Special Publication, 24, 133149.Google Scholar
Nonn, H. (1966) Les regions cotieres de la Galice, Espagne, étude geomorphologique. Thèse Doctorale, Univ. Strasbourg, France.Google Scholar
Odin, G.S. (1988) Green marine clays. Oolitic ironstone facies, verdine facies, glaucony facies and celadonite- beari ng facies a comparitive study. Development s in Sedimentology, 45, Elsevier, Amsterdam.Google Scholar
Odin, G.S. & Matter, A. (1981) De glauconarium origine. Sedimentology, 28, 611641.Google Scholar
Odin, G.S. & Lamboy, M. (1988) Glaucony from the margin off northwestern Spain. Pp. 249274 in: Green Marine Clays (Odin, G.S., editor). Elsevier, Amsterdam.Google Scholar
Pierce, J.W. & Stanley, D.J. (1975) Suspended sediments concentration and mineralogy in the central and western Mediterranean and mineralogical comparison with bottom sediments. Marine Geology, 19, M15 M25.Google Scholar
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 1164 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor). Chapman & Hall, London.Google Scholar
Sakamoto, W. (1972) Study on the process of river sedimentation from flocculation to accumulation in an estuary. Bulletin of the Ocean Research Institute, Tokyo, 5, 46 pp.Google Scholar
Vali, H., Martin, R.F., Aramantides, G. & Morteani, G. (1993) Smectite-group minerals in deep sea sediments: Monomineralic solid solutions or multiphase mixtures. American Mineralogist, 78, 12171229.Google Scholar
Weaver, C.W. (1989) ‘‘Authigenic Marine’’ physils. Pp. 345414 in. Clays, Muds and Shales. Developments in Sedimentology, 44. Elsevier, Amsterdam.Google Scholar