Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T21:08:25.277Z Has data issue: false hasContentIssue false

Contrasted mineralogical composition of the laterite cover on serpentinites of Nkamouna-Kongo, southeast Cameroon

Published online by Cambridge University Press:  09 July 2018

R. Yongue–Fouateu*
Affiliation:
Department of Earth Sciences, Faculty of Science, University of Yaoundé I, PO Box 812 Yaoundé, Cameroon
M. Yemefack
Affiliation:
Institute of Agricultural Research for Development (IRAD), PO Box 2067 Yaoundé, Cameroon
A. S. L. Wouatong
Affiliation:
Department of Earth Sciences, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
P. D. Ndjigui
Affiliation:
Department of Earth Sciences, Faculty of Science, University of Yaoundé I, PO Box 812 Yaoundé, Cameroon
P. Bilong
Affiliation:
Department of Earth Sciences, Faculty of Science, University of Douala, PO Box 24157 Douala, Cameroon
*

Abstract

Four drill cores along a lateritic hill in Nkamouna-Kongo (southeast Cameroon) were studied using microprobe analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and infrared spectroscopy. The main objective of the study was to investigate the occurrence of clay silicates while evaluating the Ni-Co content of the laterite for potential mineral exploitation. The thick lateritic profiles (>40 m deep) developed on serpentinized ultramafic rocks have an Fe-rich clayey fraction, with goethite as the main mineralogical constituent and secondary quartz and relicts of magnetite-maghemite as accessory minerals. Silicate clays are less abundant and occur mainly towards the top of the profiles. At the summit of the interfluve, kaolinite and some gibbsite are associated with goethite. Along the slopes, at the bottom of profiles, the weathered bedrock shows the presence of smectite (Fe-beidellite) and kaolinite, probably due to slower water-flow conditions. Towards the top of the profile in the lower clay, ferruginous and upper clay horizons, only kaolinite remains with gibbsite, after the leaching of silica and soluble cations following repeated remobilization-recrystallization processes. At the summit, where the downward movement of water is rapid, no smectite was identified. As a whole, the mineralogical composition of the material varies in close relationship with the drainage, leading to a contrasted clay mineralogy marked by the presence of Fe-beidellite and kaolinite at the bottom, and that of kaolinite and gibbsite at the summit of the profiles.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous (1987) Présence de latérites nickelifères sur roches ultrabasiques. Actes Séminaire International latérites Douala, Janvier 1986. ORSTOM, 323-336.Google Scholar
Bhattachyrra, D., Pal, K. & Srivastasa, P. (2000) Formation of gibbsite in the presence of 2/1 minerals: an example from ultisols of northeast India. Clay Minerals, 35, 827840.Google Scholar
Bilong, P., Eno Belinga, S.M. & Volkoff, B. (1992) Séquence d'évolution des paysages cuirassés et des sols ferrallitiques en zone tropicale d'Afrique Centrale. Place des sols à horizons d'argile tachetée. Comptes Rendus de l'Académie des Sciences Paris, 314, 109115.Google Scholar
Caillaud, J., Proust, D., Righi, D. & Martin, F. (2004) Ferich clays in a weathering profile developed from serpentinite. Clays and Clay Minerals, 52, 779791.Google Scholar
Caillaud, J., Proust, D. & Righi, D. (2006) Weathering sequences of rock forming minerals in a serpentinite: influence of microsystems on clay mineralogy. Clays and Clay Minerals, 54, 87100.CrossRefGoogle Scholar
Cantinolle, P., Didier, P., Meunier, J.D., Parron, C., Guendon, J.L., Bocquier, G. & Nahon, D. (1984) Kaolinites ferriferes et oxyhydroxydes de fer et d'alumine dans les bauxites des Canonnettes (S.E. de la France). Clay Minerals,, 19, 125135.Google Scholar
Cases, J.M., Lietard, O., Yvon, J. & Delon, J.F. (1982) Etude des propriétés cristallochimiques, morphologiques superficielles des kaolinites désordonnées. Bulletin de Minéralogie, 105, 439455.Google Scholar
Colin, F., Nahon, D., Trescases, J.J. & Melfi, A.J. (1990) Lateritic weathering of pyroxenites at Niquelandria Goias, Brazil. The supergene behaviour of nickel. Economic Geology, 85, 10101023.Google Scholar
Cuadros, J. & Dudek, T. (2006) FTIR investigation of the evolution of the octahedral sheet of kaolinitesmectite with progressive kaolinization. Clays and Clay Minerals, 54, 111.Google Scholar
Das, S.K., Sahoo, R.K., Muralidhar, J. & Nayak, B.K. (1999) Mineralogy and geochemistry of profiles through lateritic nickel deposits at Kansa, Sudinda, Orissa. Journal Geological Society of India, 53, 649668.Google Scholar
Delvigne, J. (1983) Micromorphology of the alteration and weathering of pyroxenes in the Koua-Bocca ultramafic intrusion. Ivory Coast, Western Africa. Proceedings of an International Seminar of CNRS, Sciences Géologiques Bulletin, 72, 5768.Google Scholar
Dudek, T., Cuadros, J. & Fiore, S. (2006) Interstratified kaolinite-smectite: nature of the layers and mechanism of smectite kaolinization. American Mineralogist, 91, 159170.Google Scholar
Dudek, T., Cuadros, J. & Huertas, J. (2007) Structure of mixed-layer kaolinite-smectite and smectite to kaolinite transformation mechanism from synthesis experiments. American Mineralogist, 92, 179192.Google Scholar
Elias, M. (2002) Nickel laterite deposits — geological overview, resources and exploitation. Pp. 205220 in: Giant Ore Deposits: Characteristics, Genesis and Exploration (David, R.C. and June, P., editors). Centre for Ore Deposit Research, Special Publication, 4. University of Tasmania, Hobart, Tasmania, Australia.Google Scholar
Eno Belinga, S.M. (1986) IIy a 600 millions d'annees… Paléoclimats et métaux, non-métaux et substances minérales utiles du Cameroun. Alitaf, 128 pp.Google Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 4, Mineralogical Society, London, 525 pp.Google Scholar
Fisher, G.B. & Ryan, P.C. (2006) The smectite to disordered kaolinite transition in a tropical soil chronosequence, Pacific Coast, Costa Rica. Clays and Clay Minerals, 54, 571586.Google Scholar
Gastuche, M.C. & Herbillon, A. (1962) Etude des gels d'alumine, cristallisation en milieu désionisé. Bulletin de la Societe Chimique de France, 7, 14041412.Google Scholar
Gaudin, A., Grauby, O., Noack, Y., Decarreau, A. & Petit, S. (2004) Accurate crystal chemistry of ferric smectites from lateritic nickel ore of Murrin Murrin (Western Australia). XRD and multi-scale chemical approaches. Clays and Clay Minerals, 39, 301315.Google Scholar
Giese, R.F. & Datta, P. (1973) Hydroxyl orientation in kaolinite, dickite and nacrite. American Mineralogist, 58, 3753.Google Scholar
Gleeson, S.A., Butt, C.M.R. & Elias, M. (2003) Nickel laterites: a review. SEG Newsletter, Society of Economic Geosciences, 54, 916.Google Scholar
Golightly, J.P. (1981) Nickeliferous laterite deposits. Economic Geology, 75 th Anniversary volume, pp. 710735.Google Scholar
Greene-Kelly, R. (1955) Dehydration of the montmor-illonite minerals. Mineralogical Magazine, 30, 604615.Google Scholar
Karathanasis, A.D. & Hajek, B.F. (1983) Transformation of smectite to kaolinite in naturally acid soil systems: structural and thermodynamic considerations. Soil Science Society of America Journal, 47, 158163.Google Scholar
Lietard, O. (1977) Contribution à l'étude des propriétés physico-chimiques, cristallochimiques et morphologiques des kaolins. These, Univ. Nancy, France, 320 pp.Google Scholar
Melfi, A.J., Trescases, J.J. & Oliveira, S.M.B. (1979-1980) Les latérites nickélifères du Brésil. Cahier ORSTOM, série Géologie, XI, 1542.Google Scholar
Millot, G. (1964) Géologie des argiles: Altérations-sédimentologie- géochimie. Masson et Cie ed., Paris, 499 pp.Google Scholar
Montes, C.R., Lucas, Y., Melfi, A.J. & Ayumi Ishida, D. (2007) Systèmes sols ferrallitiques — podzols et genèse des kaolins. Comptes Rendus Geoscience, 339, 5056.Google Scholar
Nédélec, A., Macaudiere, J., Nzenti, J.P. & Barbey, P. (1986) Evolution structurale et métamorphique des schistes de Mbalmayo (Cameroun). Implications pour la structure de la zone mobile panafricaine d'Afrique Centrale au contact du craton du Congo. Comptes Rendus de VAcademie des Sciences, Paris, 299, 11971199.Google Scholar
Ngo Bidjeck, L.M. (2000) L'altération des roches basiques et ultrabasiques du Sud Ouest Cameroun et ses implications métallogéniques. Cas du complexe d'Abiete-Yenjok. Thèse Doctorat, Université de Yaoundé I, 266 pp.Google Scholar
Nguetnkam, J.P., Kamga, R., Villieras, F., Ekodeck, G.E. & Yvon, J. (2007) Pedogenic formation of smectites in a vertisol developed from granitic rock from Kaélé (Cameroon, Central Africa). Clay Minerals, 42, 487501.Google Scholar
Nkoumbou, C., YontaNgoune, C., Villieras, F. Njopwouo, D., Yvon, J., Ekodeck, G.E. & Tchoua, F. (2006) Decouverte des roches à affinité ophiolitique dans la chaine panafricaine au Cameroun: les talcschistes de Ngoung, Lamal Pougue et Bibodi Lamal. Comptes Rendus Geoscience, 338, 11671175.Google Scholar
Ouangrawa, M. & Yongue, F.R. (2001) L'or, le zircon et la tourmaline: traceurs de Porigine des matériaux des profils latéritiques d'Afrique. African Journal Science and Technology, Science and Engineering Series, 2, n°2, 25-37.Google Scholar
Paquet, H. (1970) Evolution géochimique des minéraux argileux dans les altérations et les sols des climats méditerranéens tropicaux à saison contrastées. Mémoire Service Carte géologique Alsace Lorraine, 212 pp.Google Scholar
Pedro, G. (1987) Geochimie, minéralogie et organisation des sols. Aspects coordonnés des problèmes pédo-génétiques. Cahiers ORSTOM, Série Pédologie, 23, n°3, 169186.Google Scholar
Pedro, G. & Chauvel, A. (1991) Contributions of modern pedological analysis to the history of soils and landscapes. Application to the study of soils derived from the Continental Terminal in Casamance, Senegal. Journal of African Earth Sciences, 12, 319323.Google Scholar
Petit, S. & Decarreau, A. (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron rich kaolinites. Clay Minerals, 25, 181196.Google Scholar
Post, J.L. & Borer, L. (2002) Physical properties of selected illites, beidellites and mixed-layer illite-beidellites from southwestern Idaho, and their infrared spectra. Applied Clay Science, 22, 7791.Google Scholar
Quantin, P., Bourbon, E. & Becquer, T. (1995) Minéralogie et contraintes édaphiques des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. P. 38 in: Deuxieme conférence internationale sur Vecologie des milieux serpentiniques, Noumea, ORSTOM, France.Google Scholar
Righi, D., Terrible, F. & Petit, S. (1999) Pedogenic formation of kaolinite- smectite mixed layers in a soil toposequence developed from basaltic parent material in Sardinia (Italy). Clays and Clay Minerals, 47, 505514.Google Scholar
Rouxhet, P.G., Samudacheata, N., Jacobs, H. & Anton, O. (1977) Attribution of the OH-stretching bands of kaolinite. Clay Minerals, 12, 171179.Google Scholar
Sahoo, R.K., Kaaden, G.V.D. & Muller, G. (1981) The mineralogy and geochemistry of nickeliferous laterite of Sukinda, Orissa, India. Lateritisation processes — Proceedings of the International Seminar on lateritisation processes, Trivandum, India, pp. 7785.Google Scholar
Sakharov, B.A., Dubienska, E., Kozubowski, P.B.J.A., Kapron, G. & Frontczak-Baniewicz, M. (2004) Serpentine-smectite interstratified minerals from lower Silesia (SW Poland). Clays and Clay Minerals, 52, 5565.Google Scholar
Segalen, P. (1970) Extraction du fer libre des sols à sesquioxydes par la méthode de De Endredy par irradiation à l'ultraviolet de solutions oxaliques. Cahiers ORSTOM, Série Pédologie, 8, 483496.Google Scholar
Seme Mouangue, A.C. (1998) Géochimie, métamorphisme et métallogénie des formations ultrabasiques du secteur est de Lomié (Sud-Est Cameroun). Thèse Doc. 3e cycle, Universite de Yaoundé I, 155 pp.Google Scholar
Som, S.K. & Joshi, R. (2002) Chemical weathering of serpentinite and Ni enrichment in Fe oxide at Sukinda area, Jajpur district, Orissa, India. Economic Geology, 97, 165172.Google Scholar
Suchel, J.B. (1987) Les climats du Cameroun. Thèse, Université St Etienne, 793-1186.Google Scholar
Tardy, Y. (1969) Géochimie des altérations, étude des arenes et des eaux de quelques massifs cristallins d'Europe et d'Afrique. Mémoire Service Carte géologique Alsace Lorraine, 31, 199 pp.Google Scholar
Tardy, Y. & Roquin, C. (1998) Dérive des continents. Paléoclimats et altérations tropicales. Editions BRGM, France, 471 pp.Google Scholar
Toteu, S.F., Yongue Fouateu, R., Penaye, J., Tchakounte, J., Seme Mouangue, A.C., Van Schmus, W.R., Deloule, E. & Stendal, H. (2006) U-Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: consequence for the Pan-African orogenic evolution of central African fold belt. Journal of African Earth Sciences, 44, 479493.Google Scholar
Trescases, J.J. (1975) L'evolution supergène des roches ultrabasiques en zone tropicale. Mémoire ORSTOM, 78, 259 pp.Google Scholar
Trescases, J.J. (1986) Nickekiferons latérites: a review on the contributions of the last ten years. Memoirs, Geological Survey of India, 120, 5162.Google Scholar
Trescases, J.J. (1993) Les gisements latéritiques de nickel. Collection sédimentologie et géochimie de la surface. Les collections de l'Académie des Sciences et du Casa, 101-110.Google Scholar
Vails, A.R., Magee, J. & Harris, B. (2003) Sechol - a major new nickel cobalt province in Guatemala. The Minerals, Metals and Materials Society, Charlotte, North Carolina, USA, 13 pp.Google Scholar
Van der Marel, H.W. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elsevier, Amsterdam, 396 pp.Google Scholar
Vingiani, S., Righi, D., Petit, S. & Terrible, F. (2004) Mixed layer kaolinite-smectite minerals in a red- —black soil sequence from basalt in Sardinia (Italy). Clays and Clay Minerals, 52, 473483.Google Scholar
Vitovskaya, I.V. (1989) Mineral forms and concentration mechanisms in lateritic deposits. Pp. 144169 in: Weathering; its Products and Deposits — Volume II. Products, Deposits, Geotechnics. Theophrastus publications, Athens.Google Scholar
Wells, M.A. (2003) Murrin Murrin nickel laterite deposit, WA. CRC LEME, Canberra, Australia, 3 pp.Google Scholar
Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34, 725.Google Scholar
Wouatong, A.S.L., Kitagawa, R., Tchoua, M.F., Talla, V. & Njopwouo, D. (2005) Kaolinization of saprolite developed on Pan African granite of Batie district, west province of Cameroon. Clay Science, 13, 718.Google Scholar
Yongue-Fouateu, R., Eno Belinga, S.M. & Trescases, J.J. (1998a) Sequence d'altération des roches ultrabasiques dans la région de Lomié, Sud-Est du Cameroun. Annales de la Faculté des Sciences, Université Yaoundé I, série Sc. Nat. et Vie, 34-1, 1.17.Google Scholar
Yongue-Fouateu, R., Trescases, J.J., Boulange, B. & Eno Belinga, S.M. (1998b) Concentration de cobalt et de nickel dans les laterites du Sud Est du Cameroun, en Afrique Centrale. Pp. 387399 in: Géosciences au Cameroun (Vicat, J.P. and Bilong, P., editors), Collection GEOCAM, 1, Press Univ. Yaoundé I.Google Scholar
Yongue-Fouateu, R., Ghogomu, R.T., Penaye, J., Ekodeck, G.E., Stendal, H. & Colin, F. (2006) Nickel and cobalt distribution in the laterites of the Lomié region, south-east Cameroon. Journal of African Earth Sciences, 45, 3347.Google Scholar