Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T17:32:49.841Z Has data issue: false hasContentIssue false

Evidence by transmission electron microscopy of weathering microsystems in soils developed from crystalline rocks

Published online by Cambridge University Press:  09 July 2018

R. Romero
Affiliation:
Departamento de Edafologia e Quimica Agricola, Universidad de Santiago de Compostela, Espana
M. Robert
Affiliation:
Station de Science du Sol, INRA, 78026 Versailles, France
F. Elsass
Affiliation:
Station de Science du Sol, INRA, 78026 Versailles, France
C. Garcia
Affiliation:
Departamento de Edafologia e Quimica Agricola, Universidad de Santiago de Compostela, Espana

Abstract

High-resolution electron microscopy and microanalytical studies were performed on clay and bulk soil samples developed on various igneous and metamorphic rocks from Galicia in the Coruna province in NW Spain. Two mineralogical microsystems can be distinguished showing different stages of weathering. For feldspars, exsolution and mass transformation lead to the delineation of parallel domains, and to formation of gel or paracrystalline minerals. For micas, alteration starts with a physical breakdown, i.e. exfoliation and crystal microdivision; individualization of monolayers is followed by gel formation. A solid phase diffusion phenomenon can explain the formation of 1 : 1 phyllosilicates inside 2 : 1 phyllosilicates or within the continuum of the original crystals. Evidence of such weathering stages in crystalline rocks can be related to the occurrence of specific climatic conditions between temperate and tropical areas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, R.R., Gilkes, R.J., ArmitageT.M. & Hyllier, J.W. (1985) Feldspar weathering in lateriticsaprolite. Clays Clay Miner., 33, 31–34.Google Scholar
Ahn, J.A. & Peacor, D.R. (1987) Kaolinitization of biotite. TEM data and implications for an alteration mechanism. Am. Miner., 27, 353–356.Google Scholar
Banfield, J.F. & Eggleton, R.A. (1988) Transmission electron microscope study of biotite weathering. Clays Clay Miner., 36, 4760.Google Scholar
Banfield, J.F. & Eggleton, R.A. (1990) Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering. Clays Clay Miner., 38, 77–89.Google Scholar
Barshad, I. (1967) The effect of the variation in precipitation on the nature of clay mineral formation in soils of acid and basic igneous rocks. Proc. Int. Clay Conf. Jerusalem, I, 167173.Google Scholar
Berner, R.A. & Holdrrn, G.R. (1977) Mechanism of feldspar weathering; some observation evidence. Geology 5,, 369372.Google Scholar
Berner, R.A. & Holdren, G.R. (1979) Mechanism of feldspar weathering. II. Observations of feldspars from soils. Geochim. Cosmochim. Acta, 43, 1173–1186.CrossRefGoogle Scholar
Borggaard, O.K. (1985) Phase identification by selective dissoluton techniques. Pp. 8398 in: Iron in Soils and Clay Minerals(Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). NATO AS1 Series.Google Scholar
Boudot, J.P., Bel Hadj Brahim, A., Steimem, R. & Seigle Murandi, F. (1989) Biodegradation of synthetic organo- metallic complexes of iron and aluminium with selected metal to carbon rations. Soil Biol. Biochem., 21, 961–966.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1965) Rock Forming Minerals.Vol. 4, Framework Silicates. Green & Co. Ltd., London.Google Scholar
Delvigne, J. & Boulange, B. (1973) Micromorphologie des hydroxides d^luminium dans les niveaux d'alteration et dans les bauxites. Pp. 665-681 in: Soil Microscopy (Rutherford, editor). Publ. Limestone Press, Kingston, Ontario.Google Scholar
Eggleton, R.A., Buseck, P.R. (1980) High resolution electron microscopy of feldspar weathering. Clays Clay Miner., 28, 173–178.Google Scholar
Esteoule-Choux, J. & Blanchet, C. (1987) L'alteration directe de muscovites et de biotites en halloysite: mise en evidence par microscope electronique a balayage. Clay Miner., 22, 11–20.CrossRefGoogle Scholar
Eswaran, H. & Bin, W. (1978) A study of a deep weathering profile on granite in peninsular Malysia: III. Alteration of feldspar. Soil Sci. Soc. Am. J., 42, 154–158.Google Scholar
FAO (1985) Soil Map of the World, Revised Legend.Revised third draft. FAO-UNESCO, Rome.Google Scholar
Garcia-Rodeja, E., Silva, M.B. & Macias, F. (1987) Andosols developed from non-volcanic materials in Galicia, NW Spain. J. Soil Sci., 38, 537–591.Google Scholar
Gilkes, R.J., Young, R.C. & Quirk, J.P. (1972) The oxidation of octahedral iron in biotite. Clays Clay Miner., 20, 303–315.CrossRefGoogle Scholar
Guilbert, J.M. & Sloane, R.L. (1968) Electron-optical study of hydrothermal fringe alteration of plagioclase in quartz monzonite, Butte district, Montana. Clays Clay Miner., 6, 215–221.Google Scholar
Kittrick, J.A. (1973) Mica derived vermiculites as unstable intermediate. Clays Clay Miner., 21, 479488.Google Scholar
Macias Vasquez, F. (1981) Formation of gibbsite in soils and saprolites of temperature-humid zones. Clay Miner., 16, 43–52.Google Scholar
Mackinnon, I.D.R. & KaserS.A. (1987) Microanalysis of clays at low temperature. Microbeam Analysis,, 332334.Google Scholar
Mackinnon, I.D.R., Lumpkin, G.R. & Van Deusen, S.B. (1986) Thin-film analyses of silicate standards at 200 kv: the effect of temperature on element loss. Microbeam Analysis,, 45M54.Google Scholar
Martinez, C.A. (1987) Zonas agroecologicas de Galicia, Zona climatica. FAO Anales de Edafologia y Agrobiologia. XLVI, 521538.Google Scholar
Meunier, A., Velde, B., Dudoignon, P. & Beaufort, D. (1983) Identification of weathering and hydrothermal alteration in acid rocks. Petrography and mineralogy of clay minerals. Sci. Geol. Mem., 72, 93–99.Google Scholar
Novikoff, A. (1974) L'alteration des roches dans le Massif du Mailla (Republique Populaire du Congo). Formation et evolution des argiles en zone ferrallitique.These Univ. Strasbourg, France.Google Scholar
Raussel-Colom, J.A., Sweatman, T.R., Wells, C.B. & Norrish, K. (1965) Experimental Pedology(Hallsworth, & Crawford, , editors). Butterworth, London.Google Scholar
Rich, C.I. (1972) Potassium in solid minerals. Pp. 15-35 in: Potassium in Soil. Proc. 9th Coll. Int. Potassium Inst. Landshut/Federal Republic of Germany, (Int. Potash Inst.).Google Scholar
Robert, M. (1972) Transformation experimentale de glauconites et d'illites en smectites. C.R. Acad. Sc. Paris,, 275, serie D, 13191322.Google Scholar
Robert, M. & Barshad, I. (1972) Sur les proprietes et al determination des mineraux argileux 2/1 expansibles (vermiculites-smectites). C.R. Acad. Sc. Paris,, 275, serie D, 14631465.Google Scholar
Robert, M. & Pedro, G. (1969) Etude des relations entre les phenomenes d'oxydation et Taptitude a Touverture dans les micas trioctaedriques. Proc. Int. Clay Conf. Tokyo,, 116119.Google Scholar
Robert, M., Hardy, M. & Elsass, F. (1991) Crystallochemistry, properties and organization of soil clays derived from major sedimentary rocks in France. Clay Miner., 26, 409–420.Google Scholar
Romero, R. (1989) Familias mineralogicas en suelos sobire granitos de las provincia de La Coruna, Espana.PhD thesis, Univ. Santiago, Spain.Google Scholar
Srodon, J., Andreoli C,, Elsass, F. & Robert, M. (1990) Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rock. Clays Clay Miner., 38, 373–379.Google Scholar
Tardy, Y., Bocquier, G., Paquet, H. & Millot, G. (1973) Formation of clay from granite and its distribution in relation to climate and topography. Geoderma,, 10, 271–284.Google Scholar
Tazaki, K. (1976) Scanning electron microscopic study of formation of gibbsite from plagioclase. Papers Inst. Thermal Spring Res. Okayama Univ., 45, 11–24.Google Scholar
Tazaki, K. (1978) Micromorphology of plagioclase surface at incipient stage of weathering. Earth Sci. Japan (Chikyu Kagaku),, 32, 8–12.Google Scholar
Tazaki, K. (1979a) Micromorphology of halloysite produced by weathering of plagioclase in volcanic ash. Proc. Int Clay Conf. Oxford, 415422.Google Scholar
Tazaki, K. (1979b) Scanning electron microscopy study of imogolite formation from plagioclase. Clays Clay Miner., 27, 209–212.Google Scholar
Tazak丨 K. (1982) Analytical electron microscopic studies of halloysite formation processes—morphology and composition of halloysite. Proc. Int. Clay Conf. Bologna, Pavia,, 573584.Google Scholar
Tazaki, K. & Fyfe, W.S. (1987) Primitive clay precursors formed on feldspar. Can J. Earth Sci., 24, 506–527.Google Scholar
Tessier, D. (1984) Etude experimentale de Vorganisation des materiaux argileux. Hydratation, gonflement et structuration au cours de la dessiccation et de la rehumectation.These Univ. Paris, France.Google Scholar
Wada, K. & Kakuto, Y. (1983) Intergradient vermiculite-kaolin mineral in a Korean ultisol. Clays Clay Miner., 31, 183–190.Google Scholar