Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T23:25:54.488Z Has data issue: false hasContentIssue false

Formation of aluminium hydroxy vermiculite (intergrade) and smectite from mica under acidic conditions

Published online by Cambridge University Press:  09 July 2018

M. A. Vicente
Affiliation:
Centro de Edafologia, CSIC, Salamanca, Espana
M. Razzaghe
Affiliation:
University of Tabriz, Iran
M. Robert
Affiliation:
Station de Science du Sol. I.N.R.A., 78000 Versailles, France

Abstract

Aluminous hydroxy 2/1 clay minerals (‘intergrades’) can form in two ways: Al can either come externally from the solution, or internally from the mineral itself (octahedral or tetrahedral layers). This study is more concerned with the latter which seems the main source in acid soils.

The most common organic acids present under natural conditions were used on two trioctahedral micas (phlogopite and biotite), and their chemical and mineralogical weathering effects were determined.

Different kinds of mineralogical evolution are possible: mineral destruction by a few very complexing acids, possibly with intermediate stages (interstratified minerals); formation of ‘transformation’ smectite by acids derived from sugars; Al-hydroxy vermiculite formation (the 14 Å diffraction peak of which is stable under K saturation and vacuum). This evolution is the most frequent and is produced by the most numerous organic acids (even CO2), the acidity of which results in Al migration in the interlayer, but the complexing ability of which is not sufficient for Al removal.

Résumé

Résumé

La formation des minéraux argileux 2/1 hydroxyalumineux peut avoir deux origines: l'une externe où l'aluminium vient de la solution, l'autre interne où Al provient du minéral lui-même (couche tétraédrique ou octaédrique). Cet article est surtout consacré à la deuxième origine qui constitue pour les auteurs la vole principale dans les sols acides.

La plupart des acides organiques simples susceptibles d'être présents dans le milieu naturel ont été utilisé sur 2 micas trioctaédriques (phlogopite-tiotite), et leur effet, soit chimique, soit minéralogique dans l'altération a été apprécié.

Divers types d'évolution minéralogique sont possibles: destruction du minéral par des acides très complexants très peu nombreux, avec éventuellement existence de stades intermédiaires (minéraux interstratifiés); formation de smectite de transformation par des acides dérivés des sucres; formation de vermiculite hydroxyalumineuse (vermiculite dont le pic a 14 Å persiste lors d'une saturation K suivie d'une mise sous vide): c'est là l'évolution la plus courante provoquée par la majorité des acides organiques, qui du fair de leur acidité provoquent la migration de Al entre les feuillets, mais ne sont pas assez complexants pour l'entrainer en solution.

Kurzreferat

Kurzreferat

Tonerde-OH-2/1-Tonminerale (‘Zwischenprodukte’) können auf zwei Weisen entstehen: Al kann entweder extern aus der Lösung herrühren oder intern aus dem Mineral selbst (oktaedische oder tetraedische Schichten) stammen. Diese Untersuchung befasst sich vor allem mit der letzteren Möglichkeit, da diese die Hauptquelle der Minerale in sauren Böden zu sein scheint.

Die häufigsten organischen Säuren, die im Naturzustand angetroffen werden, wurden im Zusammenhang mit zwei trioktaedrischen Glimmern (Phlogopit und Biotit) angewandt, und es wurden ihre chemischen und mineralogischen Bewitterungseffekte bestimmt.

Die mineralogische Evolution kann auf verschiedene Weisen stattfinden: Einige in hohem Masse klomplexbildende Säuren können die Minerale zerstören, wobei Zwischenstufen auftreten können (geschichtete Minerale); auf Zuckern beruhende Säuren können zum Entstehen von ‘Umformsmectit’ führen; und es kann Tonerde-UH-Vermiculit gebildet werden (dessen 14 Å Beugung bei K-Sättigung und im Vakuum stabil ist). Diese Evolution ist besondern häufig und wird von den am meisten verbreiteten Organsäuren (selbst CO2) bewirkt, deren Azidität Al-Wanderung in der Zwischenschicht bewirkt, deren komplexibildende Fähigkeit aber für Ausscheidung von Al nicht ausreicht.

Resume

Resume

Existen dos posibles génesis para los filosilicatos 2/1 hidroxialuminosos (intergrade): Una, en que el aluminio interlaminar tiene un origen exterior al mineral de partida, y otra en que procede de las capas tetraédrica u octaédrica de dicho mineral. En el presente trabajo se estudia principalmente la segunda de dichas vias de formación, que es la mas frecuente en suelos ácidos. Dos micas trioctaédricas, flogopita y biotita, han sido tratadas con la mayoria de los ácidos orgánicos simples existentes en medio natural, estudiándose los efectos quimico y mineralógico producidos en elias. Con los distintos ácidos empleados, y según la evolución que provocan en las micas, pueden hacerse tres grupos: (1°) Fuertemente complejantes, que destruyen el mineral, con aparicion en algunos casos de estados intermedios poco estables (interstratificados). (2°) Derivados de azúcares (galacturonico), que dan lugar a la formación de esmectita de transformación. (3°) Acidos que inducen la formacion de vermiculita hydroxialuminosa (cuyo pico a 14 Å es estable a vacio, después de saturar con potasío). En este tercer grupo, el mas numeroso, el H+ provoca la migracion del aluminio, de sus posiciones en la red del silicato, al espacio interlaminar, donde parcialmente hidroxilado queda retenido.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berthelin, J. & Kogblevi, A. (1974) Rev. Ecol. Biol. So. 4, 499.Google Scholar
Blanchet, R., Perigaut, S., Chaumont, C. & Nadeau, J. (1960) Ann. Agron. 6, 621.Google Scholar
Blum, W.E. (1976) Zeit. Pfl. and Bodenk. 1, 107.Google Scholar
Boylb, J.R., Voigt, G.K. & Sawhney, B.L. (1967) Scienc. 155, 193.Google Scholar
Bruckert, S. (1970) Ann. Agron. 21, 421.Google Scholar
Brydon, J.E., Kodama, H. & Ross GJ. (1968) Trans. IXth Inter. Congr. Soil Set, Adelaid. 3, 41.Google Scholar
Caillere, S., Henin, S. & Merino, J. (1947) C. r. Acad. Sci. Pari. 224, 842.Google Scholar
De La Calle, C, Suquet, H. & Pezerat, H. (1975) Bull. Gr. fr. Argile. 27, 31.Google Scholar
Carstea, D.D., Harward, M.E. & Knox, E.G. (1970) Soil Sci. Soc. Amer. Proc. 34, 517.CrossRefGoogle Scholar
Chernov, V.A. & Kislitzyna, L.P. (1955) Pochvovedeni. 3, 7.Google Scholar
de Coninck, F. & Jamagne, M. (1974) Trans. Xth Intern. Congr. Soil Sci., Mosco. 7, 83.Google Scholar
Eeckmann, J.P. & Laudelout, H. (1961) Kollofd Zeit. 178, 2.Google Scholar
Foster, M.D. (1960) U.S. Geol. Survey., Prof. Paper 354 B, 49 p.Google Scholar
Frink, C.R. (1972) Acid Sulphate Soils: Symposium Wageningen, 131.Google Scholar
Gjems, O. (1963) Clay Miner. Bull. 5, 183.CrossRefGoogle Scholar
Hetier, J.M. & Tardy, Y. (1969) C. r. Acad. Sci. Paris. 268-D, 259.Google Scholar
Huang, W.H. & Keller, W.D. (1972) Nature: Phys. Sci. 293, 149.Google Scholar
Jackson, M.L. (1963) Soil Sci. Amer. Proc. 27, 1.CrossRefGoogle Scholar
Kaurichev, I.S., Ivanova, T.N. & Norzdrunova, E.M. (1963) Pochvovedeni. 3, 27.Google Scholar
Laudelout, H. & Eeckmann, J.P. (1958) Trans. II and IV Comm. Hambur. 2, 194.Google Scholar
Lelong, F. & Souchier, B. (1972) Science de la Terr. 17, 353.Google Scholar
Longuet-Escard, J. (1950) Trans. IVth Intern. Congr. Soil Sci., Amsterda. 3, 40.Google Scholar
Paver, H. & Marshall, C.E. (1934) J. Soc. Chem. Ind. 53, 750.Google Scholar
Razzaghe-Karimi, M. & Robert, M. (1975) C. r. Acad. Sci. Pari. 280-D, 2175.Google Scholar
Rich, C.I. (1968) Clays Clay Miner. 16, 15.CrossRefGoogle Scholar
Riviere, A., Vernhet, S. & VAN DER Marel, H.W. (1961) C. r. Acad. Sci. Pari. 253, 159.Google Scholar
Robert, M. (1968) Bull. Gr.fr. Argile. 20, 153.Google Scholar
Robert, M. & Barshad, I. (1972) C. r. Acad. Sci. Pari. 275-D, 1463.Google Scholar
Robert, M. & Pedro, G. (1972) Proc. Intern. Clay Conf., Madrid 433.Google Scholar
Robert, M. (1975) Ann. Agron. 26, 363.Google Scholar
Robert, M. & Razzaghe-Karimi, M. (1975) C. r. Acad. Sci. Pari. 280-D, 2175.Google Scholar
Roberson, H.E. & Jonas, E.C. (1965) Am. Miner. 50, 766.Google Scholar
Schwertmann, U. (1962) Beit. Min. Petro. 8, 199.CrossRefGoogle Scholar
Sokolova, T.A. & Belousova, N.I. (1974) Pochvovedeni. 7, 259.Google Scholar
Veith, J. & Schwertmann, U. (1972) Zeit. Pfl. Bodenk. 131, 21.Google Scholar
Vicente-Hernandez, M.A. & Robert, M. (1975) C. r. Acad. Sci. Pari. 281-D, 523.Google Scholar
Walker, G.F. (1958) Clay Miner. Bull. 3, 302.Google Scholar
Weaver, C.E. (1958) Am. Miner. 43, 839.Google Scholar
Webley, D.M., Henderson, M.E.K. & Taylor, J.F. (1963) J. Soil Sci. 14, 102.CrossRefGoogle Scholar