Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T10:37:46.000Z Has data issue: false hasContentIssue false

A hydrothermal clay mineral assemblage at the Late Proterozoic unconformity in the Buenos Aires Complex – La Tinta Formation, Barker area, Tandilia Ranges (Argentina)

Published online by Cambridge University Press:  09 July 2018

J. C. Martínez*
Affiliation:
CONICET-INGEOSUR and Departamento de Geología, San Juan 670, UNS, Bahía Blanca, 8000, Argentina
J. A. Dristas
Affiliation:
CIC, INGEOSUR and Departamento de Geología, San Juan 670, UNS, Bahía Blanca, 8000, Argentina
H.-J. Massonne
Affiliation:
Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstrasse 18, D-70174, Germany
T. Theye
Affiliation:
Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstrasse 18, D-70174, Germany

Abstract

A general alteration pattern of two transitional clay mineral assemblages was determined by petrography and X-ray diffractometry studies at the Tandilia Late Proterozoic unconformity zone, around the Barker locality: (1) K-white mica + chlorite + calcite ± anatase-rutile ± secondary quartz (farther from the unconformity) and (2) pyrophyllite + K-white mica + Ti-rich hematite ± aluminium phosphate-sulphate minerals ± tourmaline ± anatase-rutile (closer to the unconformity). The local occurrence of Na in K-white micas and K-Na in pyrophyllite is described for the first time. Possible interlayering with intermediate K-Na mica and paragonite is indicated by detailed X-ray diffraction analyses. A negative Eu anomaly (Eu/Eu* = 0.24), strongly positive Eu anomaly (Eu/Eu* =11.7) and positive Ce anomaly characterized rapid changes from an unaltered basement to the most altered basement and sedimentary rocks at the unconformity. Aluminium phosphate-sulphate minerals dominate patterns of LREE. A model of hydrothermal alteration comparable to that of unconformity-related uranium deposits is presented.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreis, R.R., Zalba, P.E. & Iñiguez-Rodriguez, A.M. (1992) Paleosuperficies y sistemas depositacionales en el Proterozoico Superior de la region de Sierras Bayas, Sierras Septentrionales de la provincia de Buenos Aires, Argentina. Cuarta Reunion Argentina de Sedimentologia, 1, 283290.Google Scholar
Beaufort, D., Patrier, P., Laverret, E., Bruneton, P. & Mondy, J. (2005) Clay alteration associated with Proterozoic unconformity-type uranium deposits in the East Alligator Rivers uranium deposits, Northern Territory, Australia. Economic Geology, 100, 515536.CrossRefGoogle Scholar
Bonhomme, M.G. & Cingolani, C.A. (1980) Mineralogía y geocronología Rb-Sr y K-Ar de fracciones finas de la ‘Formatión La Tinta', provincia de Buenos Aires. Asociación Geológica Argentina. Revista, 35, 519538.Google Scholar
Brookins, D.G. (1989) Aqueous geochemistry of rare earth elements. Pp. 201225 in: Geochemistry and Mineralogy of Rare Earth Elements (Lipin, B.R. & McKay, G.A., editors), Reviews in Mineralogy and Geochemistry, 21. Mineralogical Society of America.CrossRefGoogle Scholar
Cingolani, C.A. & Dalla Salda, L. (2000) Buenos Aires cratonic region. Pp. 139147 in: Tectonic Evolution of South America (Cordani, U.G., Milani, E.J., Filho, A.T. & Campos, D.A., editors), Río de Janeiro.Google Scholar
Delpino, S.H. & Dristas, J.A. (2008) Dolomitic marbles and associated calc-silicates, Tandilia belt, Argentina: Geothermobarometry, metamorphic evolution, and P-T path. Journal of South American Earth Sciences, 25, 501525.CrossRefGoogle Scholar
Di Paola, E.C. & Marchese, H.G. (1975) Relatión entre la tectonosedimentación, litología y mineralogía de arcillas del complejo Buenos Aires y la Formatión La Tinta (Prov. de Buenos Aires). Revista d. la Asociación Argentina de Mineralogía, Petrología y Sedimentología, 5, 34, 45-58.Google Scholar
Dristas, J.A. & Frisicale, M.C. (1984) Estudio de los yacimientos de arcilla del cerro Reconquista, San Manuel, Sierras Septentrionales de la Provincia de Buenos Aires. 9° Congreso Geologico Argentina, S. C. de Bariloche. Adas, 5, 507521.Google Scholar
Dristas, J.A. & Frisicale, M.C. (1992) Breccias associated with hydrothermal clay deposits, Barker, Tandilia, Bs. As. Argentina. Zentralblatt für Geologie und Paläontologie Teil I, 6, 19011915.Google Scholar
Dristas, J.A. & Martínez, J.C. (2007) Late Proterozoic unconformity-related hydrothermal iron deposits in the north Barker area (Tandilia ranges, Argentina). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 246, 267281.CrossRefGoogle Scholar
Dristas, J.A., Frisicale, M.C. & Martínez, J.C. (2003) High REE APS minerals associated with advanced argillic alteration in Cerrito de la Cruz clay deposit, Barker, Buenos Aires province, Argentina. Gottingen Arbeiten zur Geologie und Paläontologie, 5, 16.Google Scholar
Fleet, M.E. (2003) Sheet silicates: micas. Pp. 41297 in: Rock-Forming Minerals, 2nd ed. (Deer, W.A., Howie, R.A. & Zussman, J., editors), Vol. 3A. The Geological Society, London.Google Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 958 in: Low-temperature Metamorphism (Frey, M., editor.), Blackie and Sons, Glasgow.Google Scholar
Frisicale, M.C. (1991) Estudio de algunos yacimientos de arcilla originados por actividad hidrotermal, en las Sierras Septentrionales de la provincia de Buenos Aires. PhD thesis, Universidad Nacional del Sur, Bahia Blanca, Argentina.Google Scholar
Frisicale, M.C. & Dristas, J.A. (1993) Alteration hidrotermal en el contacto entre el basamento y la secuencia sedimentaria, en el Cerrito de la Cruz, Tandilia. 12° Congreso Geologico Argentino y II Congreso de Exploración de Hidrocarburos. Adas VII, 5, 222228.Google Scholar
Gaboreau, S., Beaufort, D., Viellard, P. & Patrier, P. (2005) Aluminium phosphate sulfate minerals associated with Proterozoic unconformity-type uranium deposits in the East Alligator River uranium field, Northern Territories, Australia. The Canadian Mineralogist, 43, 813827.CrossRefGoogle Scholar
Giorgetti, G., Monecke, T., Kleeberg, R. & Herzig, P.M. (2003) Intermediate sodium-potassium mica in hydrothermally altered rocks of the Waterloo deposit, Australia: a combined SEM-EMP-XRD-TEM study. Contributions to Mineralogy and Petrology, 146, 159173.CrossRefGoogle Scholar
Jiang, W-T. & Peacor, D.R. (1993) Formation and modification of metastable intermediate sodium potassium mica, paragonite, and muscovite in hydrothermally altered metabasites from northern Wales. American Mineralogist, 78, 782793.Google Scholar
Komninou, A. & Sverjensky, D.A. (1995) Hydrothermal alteration and chemistry of ore-forming fluids in an unconformity-type uranium deposit. Geochimica et Cosmochimica Ada, 59, 27092723.CrossRefGoogle Scholar
Lackschewitz, K.S., Devy, C.W., Staffers, P., Botz, R., Eisenhauer, A., Kummetz, M., Schmidt, M. & Singer, A. (2004) Mineralogical, geochemical and isotopic characteristic of hydrothermal alteration processes in active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea. Geochimica et Cosmochimica Ada, 68, 44054427.CrossRefGoogle Scholar
Leveratto, M.A. & Marchese, H.G. (1983) Geología y estratigrafía de la Formatión La Tinta (y homólogas) en el rea clave de Sierra de la Tinta-Barker-Villa Cacique-Arroyo Calaveras, prov. de Buenos Aires. Asociación Geológica Argentina, Revista, 38, 235247.Google Scholar
Li, G., Peacor, D.R., Merriman, R.J. & Roberts, B. (1994) The diagenetic to low-grade metamorphic evolution of matrix white mica in the system muscovite-paragonite in a mud-rock from Central Wales, United Kingdom. Clays and Clay Minerals, 42, 369381.CrossRefGoogle Scholar
Livi, K.J.T., Veblen, D.R., Ferry, J.M. & Frey, M. (1997) Evolution of 2:1 layered silicates in low-grade metamorphosed Liassic shales of central Switzerland. Journal of Metamorphic Geology, 15, 323344.CrossRefGoogle Scholar
Lorilleux, G., Cuney, M., Jebrak, M., Rippert, J.C. & Portella, P. (2003) Chemical brecciation processes in the Sue unconformity-type uranium deposits, Eastern Athabasca Basin (Canada). Journal of Geochemical Exploration, 80, 241258.CrossRefGoogle Scholar
Manassero, J.M. (1986) Estratigrafia y estructura en el sector oriental de la localidad de Barker, Provincia de Buenos Aires. Asociación Geológica Argentina, Revista, 41, 375385.Google Scholar
Martínez, J.C. & Dristas, J.A. (2007) Paleoactividad hidrotermal en la discordancia entre el Complejo Buenos Aires y la Formatión La Tinta en el rea de Barker, Tandilia. Asociación Geológica Argentina, Revista, 62, 375386.Google Scholar
Massonne, H.-J. (1995) III. Rhenohercynian Foldbelt, C. Metamorphic units (northern phyllite zone), 4. Metamorphic evolution. Pp. 132137 in: Pre-Permian Geology of Central and Eastern Europe (Dallmeyer, R.D., Franke, W. & Weber, K., editors). Springer, Berlin.CrossRefGoogle Scholar
Merriman, R.J. (2002) Contrasting clay mineral assemblages in British Lower Palaeozoic slate belts: the influence of geotectonic setting. Clay Minerals, 37, 207219.CrossRefGoogle Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 148 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph 6, Mineralogical Society, London.Google Scholar
Pankhurst, R.J., Ramos, V.A. & Linares, E. (2003) Antiquity of the Río de la Plata Craton in Tandilia, southern Buenos Aires province, Argentina. Journal of South American Earth Sciences, 16, 513.CrossRefGoogle Scholar
Radoslovich, E.W. & Slade, P.G. (1980) Pseudotrigonal symmetry and the structure of gorceixite. Neues Jahrbuch für Mineralogie, Monatshefte, 157-160.Google Scholar
Reed, S.J.B. & Buckley, A. (1998) Rare earth element determination in minerals by electron-probe microanalysis: application of spectrum synthesis. Mineralogical Magazine, 62, 18.CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Miiller, G., Neiva, A.M.R., Radoslovich, E.W., Robert J-L., Sassi, F.P., Takeda, H., Weiss, Z. & Wones, D.R. (1998) Nomenclature of the micas. Clays and Clay Minerals, 46, 586595.CrossRefGoogle Scholar
Shau, Y-H., Feather, M.E., Essene, E.J. & Peacor, D.R. (1991) Genesis and solvus relations of submicroscopically intergrown paragonite and phengite in blueschist from northern California. Contributions to Mineralogy and Petrology, 106, 367378.CrossRefGoogle Scholar
Stoffregen, R.E. & Alpers, C.N. (1987) Woodhouseite and svanbergite in hydrothermal ore deposits: product of apatite destruction during advanced argillic alteration. The Canadian Mineralogist, 25, 201211.Google Scholar
Stumpf, T., Marques Fernandes, M., Walther, C., Schmidt, M., Dardenne, K., Bosbach, D. & Fänghanel, T. (2007) Structural incorporation of Eu(III) into calcite: process understanding on a molecular level. 7th Annual V. M. Goldschmidt Conference, Köln. Geochimica et Cosmochimica Ada, 71, Suppl. S, A160.Google Scholar
Zalba, P.E. & Andreis, R.R. (1998) Basamento saprolitizado y secuencia sedimentaria suprayacente en San Manuel, Sierras Septentrionales de Buenos Aires, Argentina. VII Reunion Argentina de Sedimentologia, Salta. Adas, 143-154.Google Scholar
Zalba, P.E., Andreis, R.R. & Lorenzo, F.C. (1982) Consideraciones estratigraficas y paleoambientales de la secuencia basal Eopaleozoica de la Cuchilla de Las Aguilas, Barker, Argentina. V Congreso Latinoamericano de Geología, Argentina, 2, 389-409.Google Scholar
Zalba, P.E., Poiré, D.G., Andreis, R.R. & Iñiguez-Rodríguez, A.M. (1992) Precambrian and Lower Paleozoic records and paleosurfaces of the Tandilia system, Buenos Aires province, Argentina. Mineralogical and geochemical records of paleoweathering. Memoire des Sdences de la Terre, 18, 153161.Google Scholar