Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-10-31T22:16:14.954Z Has data issue: false hasContentIssue false

A new, efficient, one-step method for the removal of organic matter from clay-containing sediments

Published online by Cambridge University Press:  09 July 2018

L. P. Meier
Affiliation:
Laboratory for Clay Mineralogy, Geotechnical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
A. P. Menegatti
Affiliation:
Laboratory for Clay Mineralogy, Geotechnical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland

Abstract

For the purpose of clay examination, a new one-step method for the removal of organic matter was developed using sodium peroxodisulphate combined with different buffers such as sodium hydrogen carbonate, disodium hydrogen phosphate and disodium tetraborate. From an early Cretaceous black shale from the Apennines with a high organic carbon content, the <2 µm clay fraction was separated and contained 10.9 wt% organic carbon. To prevent decomposition of the clay layers, the period of oxidation was short (25-60 min) and the pH was kept between 5 and 9.5. Up to 98% of carbon was removed by this method.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.U. (1961) An improved pretreatment for mineralogical analysis of samples containing organic matter. Clays Clay Miner. 10, 380388.CrossRefGoogle Scholar
Book, R. (1972) Aufschlussmethoden der Chemie, pp. 176-177, Verlag Chemie.Google Scholar
Brunner, H. (1897) Sur la détermination quantitative du carbone, des halogènes et de 1’ azote au moyen des persulfates alcalins. Schweiz. Wochenschr. Chem. Pharm. 35, 280281.Google Scholar
Channell, J.E.T., Lowrie, W. & Medizza, F. (1979) Middle and Early Cretaceous magnetic stratigraphy from the Cismon section, Northern Italy. Earth Plan. Sci. Lett. 42, 153166.CrossRefGoogle Scholar
Coccioni, R., Franchi, R., Nesci, O., Wezel, F.-C., Battistini, F. & Pallecchi, P. (1987) Stratigraphy and Mineralogy of the Selli Level (Early Aptian) at the base of the Marne a Fucoidi in the Ubro-Marchean Apennines (Italy). Pp. 563–584 in: Cretaceous of the Western Tethys (Wiedmann, J., editor) Proc. 3rd Int. Cretaceous Sym. Tübingen 1987.Google Scholar
Espitalié, J., Deroo, G. & Marquis, F. (1985) La pyrolyse Rock Eval et ses applications. Rev. Inst. Franc. P∼trole, 10, 563579, 755-784.Google Scholar
Gluskoter, H.J. (1964) Electronic low-temperature ashing of bituminous coal. Fuel, 43, 285291.Google Scholar
Gupta, K.B. & Zanoni, A.E. (1974) Total phosphorus analysis: persulfate or ashing. Water Sewage Works, 121, 7477.Google Scholar
Huang, W.H. & Keller, W.D. (1972) Organic acids as agents of chemical weathering of silicate minerals. Nat. Phys. Sci., 239, 149151.Google Scholar
Jackson, M.L. (1956) Soil Chemical Analysis – Advanced Course. Published by the author, 2nd ed., Madison, Wisconsin.Google Scholar
Lagaly, G. (1993) Reaktionen der Tonminerale. Pp 89-167 in: Tonminerale und Tone (Jasmund, K. & Lagaly, G., Editors), Steinkopff Verlag, Darmstadt.Google Scholar
Keil, R.G., Monflugon, D.B., Prahl, F.G. & Hedges, J.I. (1994) Sorptive preservation of labile organic matter in marine sediments. Nature, 370, 549–552.CrossRefGoogle Scholar
Keller, J.-P. (1981) Le dégagement du materiel minéral des tests d’ invertebres (Bivalves) par protéolyse enzymatique de la trame organique. Géobios, 14, 269273.CrossRefGoogle Scholar
Kraus, I. & Zuberec, J. (1976) Bentonites and kaolins at the SW margin of the Kremnické Phorie Mts. in the neovolcanic region of Central Slovakia, 7th. Conf. Clay Min. PetroL, Karlovy Vary, 439-449.Google Scholar
Madsen, F.T. & Nüesch, R. (1990) Langzeitverhalten von Tongesteinen und tonigen Sulfatgesteinen, Beiträge zur Geologie der Schweiz, 85, 51pp.Google Scholar
Perez Rodriguez, J.L., Weiss, A. & Lagaly, G. (1977) A natural clay organic complex from Andalusian Black Earth. Clays Clay Miner. 25, 243251.Google Scholar
Schmidhalter, U., Kahr, G., Evéquoz, M., Studer, C. & Oertli, J.J. (1994), Adsorption of thiamin (Vitamin B1) on soils and clays. Soil Sci. Soc. Am. J., 58, 18291837.Google Scholar
Stumm, W. (1992) Chemistry of the Solid-Water Interface. Jhon Wisely & Sons.Google Scholar
Taieb, R. (1990) Les isotopes de l'hydrogène, carbone et oxygène dans les sédiments argileux et les eaux de formation. PhD thèse, Institut National Polytechnique de Lorraine, France.Google Scholar