Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-04T20:47:18.980Z Has data issue: false hasContentIssue false

A new kaolinite order index based on XRD profile fitting

Published online by Cambridge University Press:  09 July 2018

P. Aparicio*
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Apdo. 553, 41071Sevilla, Spain
E. Galán
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Apdo. 553, 41071Sevilla, Spain
R. E. Ferrell
Affiliation:
Department of Geology and Geophysics, Louisana State University Baton Rouge, LA 70803, USA
*

Abstract

The determination of kaolinite order-disorder by X-ray diffraction is problematic due to overlapping peaks from associated kaolin minerals and X-ray amorphous phases. This paper presents a new index (Aparicio-Gala´n-Ferrell index — AGFI), measured on 02l and 11l reflections after decomposing individual peaks in the complex diffraction band in an effort to reduce interferences. The new index was tested with three kaolins, of varying structural order, and their admixtures containing different percentages of quartz, feldspar, illite, smectite, chlorite, halloysite and Fe hydroxides and silica gels. The AGFI is highly correlated with the percentage of low-defect kaolinite and the Hinckley Index. It is not as prone to interference by associated minerals and X-ray amorphous phases as other indices. The AGFI can be used to determine kaolinite order-disorder in a wide variety of kaolins and kaolinitic rocks; the only prerequisite is that the kaolinite content should be >10 wt.% in order for the results to be reproducible.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amigó, J.M., Bastida, J., García, Agramut, M.J., Sanz, M. & Galvan, J. (1987) Crystallinity of Lower Cretaceous kaolinites of Teruel. Pp. 7475 in: Proceedings of the 6th EUROCLAY Conference, Sevilla‘87 (Galán, E., Pérez-Rodríguez, J.L. & Cornejo, J., editors). Sevilla, Spain.Google Scholar
Aparicio, P. & Galan, E. (1999) Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47, 1227.Google Scholar
Aparicio, P., Ferrell, R.E. & Galan, E. (1999) A new kaolinite crystallinity index from mathematical modelling of XRD data. Abstracts volume of the 9th EUROCLAY Conference, p. 57.Google Scholar
Aparicio, P., Ferrell, R.E. & Galan, E. (2001) Aplicacion de la modelizacion matemática a los diagramas de DRX de la caolinita para mejorar el cálculo de ‘índices de cristalinidad’. Pp. 2129 in: Integración de Ciencia y Tecnologña de las arcillas en el Contexto Tecnológico Social del Nuevo Milenio (Pascual, J. Cosp, J. Zapatero Arenzana, Ramñrez del Valle, A.J. & Moya García, M.V., editors). Sociedad Española de Arcillas, Malaga, Spain.Google Scholar
Bookin, A.S., Drits, V.A., Plançon, A. & Tchoubar, C. (1989) Stacking faults in kaolin-group minerals in the light of real structural features. Clays and Clay Minerals, 37, 297307.Google Scholar
Brindley, G.W. & Robinson, K. (1946) Randomness in the structures of kaolinitic clay minerals. Transactions of the Faraday Society, 42 B, 109205.Google Scholar
Brindley, G.W., Chih-Chun Kao, , Harrison, J.L., Lipsicas, M. & Raythatha, R. (1986) Relations between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34, 239249.Google Scholar
Cases, J.M., Liètard, O., Yvon, J. & Delon, J.F. (1982) Étude des propiétés cristallochimiques, morphologiques, superficielles de kaolinites désordennés. Bulletin de Mineralogie, 105, 439455.Google Scholar
Chàvez, CL. & Johns, W. (1995) Mineralogical and ceramic properties of refractory clays from central Missouri (USA). Applied Clay Science, 9, 407424.Google Scholar
Ferraro, J. & Kübler, B. (1964) Presence de dickite dans les gres Cambrienes d‘Hassi Messaoud. Bulletin de la Service Carte Geologique Alsace-Lorraine, 17, 247261.Google Scholar
Galan, E., Mattias, P.P. & Galván, J. (1977) Correlation about kaolin genesis and age of some Spanish kaolinites. K-8. P. 8 in: Proceedings of the 8th International Symposium and Meeting on Alunite, Madrid-Rome) (Galán, E., editor). Ministerio de Industria y Energía, Madrid.Google Scholar
Giese, RF. (1982) Theoretical studies of kaolin minerals: Electrostatic calculations. Bulletin de Mineralogie, 105, 417424.Google Scholar
Gomes, C. (1988) Argilas. O que sâo epara que servem. Fundaçao Caluoste Gulbenkean, Portugal, 458 pp.Google Scholar
Gonzalez, I., Aparicio, P. & Galán, E. (1999) Correlation among the most frequently used XRD crystallinity indices for kaolinites. Their accuracy and reproducibility. Pp. 367374 in: Clays for Our Future (Kodama, H., Mermut, A.R. & Torrance, K.J., editors). Proceedings of the 11th International Clay Conference, Ottawa, Canada 1997. Published by ICC97 Organinzing Committe, Ottawa, Canada.Google Scholar
Hinckley, D. (1963) Variability in “crystallinity” values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina. Pp. 229235 in: Proceedings of the 11th International Conference on Clays and Clay Minerals.Google Scholar
Hughes, J.C. & Brown, G. (1979) A crystallinity index for soil kaolins and its relation to parent rock, climate and soil nature. Journal of Soil Science, 30, 557563.Google Scholar
Köstner, H.M. & Brandl, M. (1991) Mineralogy and geochemistry of primary kaolins and related kaolinitic clays in NE-Bavaria. Pp. 641647 in: Proceedings of the 7th Euroclay Conference (Störr, M., Henning, K.H. & Adolphi, P., editors). Dresden.Google Scholar
Lietard, O. (1977) Contribution à l ‘ étude des propiétés phisicochimiques, cristallographiques et morphologiques des kaolins. Thèse Doc. Sci. Phys., Nancy, France, 345 pp.Google Scholar
Maxwell, D.T. & Hower, J. (1967) High-grade diagenesis and low-grade metamorphism in the Precambrian Selt series. American Mineralogist, 52, 843857.Google Scholar
Murray, H.H. (1954) Structural variations of some kaolinites in relation to dehydrated halloysite. American Mineralogist, 39, 97108.Google Scholar
Murray, H.H. & Lyons, S.C. (1956) Correlation of papercoating quality with degree of crystal perfection of kaolinite. Proceedings of the 4t National Conference on Clays and Clay Minerals, 4, 3140.Google Scholar
Plançon, A. & Tchoubar, C. (1977) Determination of structural defects in phyllosilicates by X-ray powder diffraction. II. Nature and proportion of defects in natural kaolinites. Clays and Clay Minerals, 25, 436450.CrossRefGoogle Scholar
Plançon, A. and Zacharie, C. (1990) An expert system for the structural characterization of kaolinites. Clay Minerals, 25, 249260.Google Scholar
Range, K.J. & Weiss, A. (1969) Uber das Verhalten von kaolinitit bei hohen Drücken. Berichte Deutsche Keramische Gesellschaft, 46, 231238.Google Scholar
Reynolds, R.C. & Bish, D.L. (2002) The effects of grinding on the structure of a low-defect kaolinite. American Mineralogist, 87, 16261630.Google Scholar
Ruiz Cruz, M.D. (1994) Diagenetic development of clay and related minerals in deep-water sandstones (S. Spain): evidence of lithological control. Clay Minerals, 29, 93104.Google Scholar
Schroeder, R.J. & Hayes, J.B. (1968) Dickite and kaolinite in Pennsylvanian limestone of southeastern Kansas. Clays and Clay Minerals, 16, 4149.Google Scholar
Stoch, L. (1974) Mineraly Ilaste (‘Clay Minerals’). Geological Publishers, Warsaw. Pp. 186193.Google Scholar
Velho, JA. & Gomes, C. (1991) Characterization of Portuguese kaolins for the paper industry: Beneficiation through new delamination techniques. Applied Clay Science, 6, 155170.Google Scholar