Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-16T14:09:36.177Z Has data issue: false hasContentIssue false

Nickel-bearing clay minerals: I. Optical spectroscopic study of nickel crystal chemistry

Published online by Cambridge University Press:  09 July 2018

A. Manceau
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UA CNRS 09, Universités Paris 6 et 7, 4 Place Jussieu. 75230 Paris Cedex 05
G. Calas
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UA CNRS 09, Universités Paris 6 et 7, 4 Place Jussieu. 75230 Paris Cedex 05
A. Decarreau
Affiliation:
Laboratoire de Géochimie des Roches Sédimentaires, UA CNRS 0723, Bat. 504, Université de Paris-Sud, 91405 Orsay Cedex, France

Abstract

Nickel crystal chemistry was systematically studied in various phyllosilicates, mainly the natural phases selected from the ‘garnierites’ of the supergene ore deposits of New Caledonia. Minerals which do not usually occur in New Caledonian parageneses were synthesised, as they could represent intermediate phases of genetic importance. In the kerolite-pimelite series, a linear relationship occurred between the ratio I(13,20)/I(02,11) of the hk bands and Ni-content. Diffuse reflectance spectra were used to derive the crystal chemical parameters of Ni. These confirmed its divalent character and its occupation of octahedral sites; the resulting structural distortion was slight and could not be detected in some minerals. There was no optical evidence for Ni atoms in 4-fold coordination. The two main parameters which showed significant variations among the studied phases were site distortion and crystal field stabilization energy (CFSE). Site distortion was at a maximum in trioctahedral smectites and sepiolite. CFSE depended on the mineralogy, crystallinity and chemical composition (Al-content) of the phase. Finally, clay minerals are classified according to the increasing stability of Ni in the octahedral sheet, which has been tentatively related to the geochemical distribution of this element. Secondary minerals are usually enriched vs. primary ones and among them are nepouite and kerolite which exhibit a high CFSE in contrast to sepiolite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammou, Chokroum M. (1969) Contribution à l'étude de la distribution du nickel dans les ferrallites de Nouvelle-Calédonie. C.R. Acad. Sci. 268, 15631566.Google Scholar
Bailey, S.W. (1972) Determination of chlorite compositions by X-ray spacings and intensities. Clays Clay Miner. 20, 381388.Google Scholar
Besset, F. & Coudray, J. (1978) Le comportement du nickel dans les processus d'altération des péridotites de Nouvelle-Calédonie. Bull. BRGM, sect. II 3, 207223.Google Scholar
Bonnin, D., Calas, G., Suqtret, H. & Pezerat, H. (1984) Intracrystalline distribution of Fe3+ in Garfield nontronite” a spectroscopic study. Phys. Chem. Miner. 12, 5564.Google Scholar
Brindley, G.W., Bish, D.L. & Wan, H.M. (1977) The nature of kerolite, its relation to talc and stevensite. Mineral. Mag. 41, 443452.CrossRefGoogle Scholar
Brindley, G.W., Bish, D.L. & Wan, H.M. (1979) Compositions, structures and properties of nickel-containing minerals in the kerolite-pimelite series. Am. Miner. 64, 615625.Google Scholar
Brindley, G.W. & Souza, J.V. (1975) Nickel-containing montmorillonites and chlorites from Brazil, with remarks on schuchardite. Mineral. Mag. 40, 141152.CrossRefGoogle Scholar
Brindley, G.W. & Wan, H.M. (1975) Compositions, structures and thermal behaviour of nickel-containing minerals in the lizardite-nepouite series. Am. Miner. 60, 863871.Google Scholar
Brown, B.E. & Bailey, S.W. (1963) Chlorite polytypism: II Crystal structure of a one-layer Cr-chlorite. Am. Miner. 48, 4261.Google Scholar
Burns, R.G. (1969) Site preferences of transition metal ions in silicate crystal structure. Chem. Geol. 5, 275283.Google Scholar
Burns, R.G. (1970) Mineralogical Applications of Crystal Field Theory. Cambridge University Press, Cambridge, UK.Google Scholar
Calas, G., Manceau, A., Novikoff, A. & Boukili, H. (1984) Comportement du chrome dans les minéraux d'altération du gisement de Chromite de Campo Formoso (Bahia, Brésil). Bull. Minér. 107, 755766.Google Scholar
Cervelle, B.D. & Maquet, M. (1982) Cristallochimie des lizardites substitutes Mg-Fe-Ni par spectromérie visible et infra-rouge proche. Clay Miner. 17, 377392.CrossRefGoogle Scholar
Decarreau, A. (1980) Cristallogénèse expérimentale des smectites magnésiennes: hectorite, stévensite. Bull. Minér. 103, 579590.Google Scholar
Decarreav, A. (1983) Etude expérimentale de la cristallogénèse des smectites. Mesure des coefficients de partage smectite triocta6driquesolution aqueuse pour les méaux M2+ de la première série de transition. Sci. Géol. 74, 185 pp.Google Scholar
Decarreau, A. (1985) Partitioning of divalent transition elements between trioctahedral smectites and water. Geochim. Cosmochim. Acta 49, (in press).CrossRefGoogle Scholar
Decarreau, A. & Perruchot, A. (1980) Néoformation argileuse au cours d'altérations expérimentales de forstérites en systèmes ouverts. Bull. Minér. 103, 344347.Google Scholar
Faust, G.T. (1966) The hydrous nickel-magnesium silicates. The garnierite group. Am. Miner. 51, 279298.Google Scholar
Faye, G.H. (1974) Optical absorption spectrum of Ni2+ in garnierite: a discussion. Can. Miner. 12, 389393.Google Scholar
Gerard, P. & Hermllon, A. (1983) Infrared studies of Ni-bearing clay minerals of the kerolite-pimelite series. Clays Clay Miner. 31, 143151.CrossRefGoogle Scholar
Julg, A. & Julg, O. (1984) Interpretation of the optical absorption spectrum of Ni-substituted lizardites. Clay Miner. 19, 107111.CrossRefGoogle Scholar
Heller-Kallat, L., Yariv, S.M. & Gross, S. (1975) Hydroxyl stretching frequencies of serpentine minerals. Mineral. Mag. 40, 197200.CrossRefGoogle Scholar
Krstanovic, P. (1968) Crystal structure of single layer lizardite. Zeitschrift fur Kristallographie 126, 163169.Google Scholar
Lakshnan, S.V.J. & Jacob, A.S. (1983) Absorption spectra of Ni2+ in (NH4)2Mg(SO4)2.6H2O and Co2+ in Na2Zn(SO4)2.4H2O. Solid State Comm. 48, 563568.Google Scholar
Low, W. (1958) Paramagnetic and optical spectra of divalent nickel in cubic crystalline fields. Phys. Rev. 109, 247255.CrossRefGoogle Scholar
Manceau, A. (1984) Localisation du nickel dans les phylosilicates. Application aux minerals de Nouvelle Calédonie. Thèse de Spécialité, Université Paris 7, 101 pp.Google Scholar
Manceau, A. & Calas, G. (1985) Heterogeneous distribution of nickel in hydrous silicates from New-Caledonia ore deposits. Am. Miner. (in press).Google Scholar
Manceau, A. & Calas, G. (1986) Nickel-bearing clay minerals. 2. X-ray absorption study of Ni-Mg distribution. Clay Miner. (in press).Google Scholar
Maquet, A., Couty, R., Cervelle, B. & Perruchot, A. (1984) Comportement du nickel lors de l'altération des roches nickélifères. Miner. Deposita 19, 118122.Google Scholar
Marfunin, A.S. (1979) Physics of Minerals and Inorganic Materials. Springer Verlag, Berlin, Heidelberg & New York.Google Scholar
Mendell, W.W. & Morris, R.V. (1982) Band quantification in reflectance spectroscopy. Lunar and Planetary Sci. XIII, 513514.Google Scholar
Nussik, S.A.M. (1969) Optical absorption spectra of Ni-bearing minerals. Izv. Akad. Nauk SSSR, Geol. Ser. 3, 108112.Google Scholar
Pelletier, B. (1983) Localisation du nickel dans les minerais ‘garniéritiques’ der Nouvelle-Calédonie. Proc. Int. Congr. Petrology of Weathering and Soils Paris, 173183.Google Scholar
Petruk, W. (1964) Determination of the heavy atom content in chlorite by means of the X-ray diffractometer. Am. Miner. 49, 6171.Google Scholar
Pryce, M.H.L., Agnetta, G., Garofano, T., Palma-Vittorelli, M.B. & Palma, M.U. (1964) Low-temperature optical absorption of nickel fluosilicate crystals. Philos. Mag. 10, 477496.CrossRefGoogle Scholar
Serna, C.J., Whrre, J.L. & Velde, B. (1979) The effect of aluminium on the infrared spectra of 7 Å trioctahedral minerals. Mineral. Mag. 43, 141148.Google Scholar
Simmons, E.L. (1972) Relation of the diffuse reflectance remission function to the fundamental optical parameters. Optica Acta 19, 845851.CrossRefGoogle Scholar
Springer, G. (1976) Falcondoite, nickel analog of sepiolite. Can. Miner. 14, 407409.Google Scholar
Szytula, A., Murasik, A. & Balanda, M. (1971) Neutron diffraction study of Ni(OH)2 . Phys. Stat. Sol. 43B, 125128.Google Scholar
Tejedor, M.I., Anderson, M.A. & Herbillon, A.J. (1983) An investigation of the coordination number of Ni2+ in nickel bearing phyllosilicates using diffuse reflectance spectroscopy. J. Solid. St. Chem. 50, 153162.Google Scholar
Trescases, J.J. (1975) L'évolution géologique supergène des riches ultrabasiques en zone tropicale. Formation des gisements nickélifères de Nouvelle-Calédonie. Mém. ORSTOM 78, 259 pp.Google Scholar
Troly, G., Esterle, M., Pelletier, B. & Reibel, W. (1979) Nickel deposits in New-Caledonia: some factors influencing their formation. Proc. Int. Laterite Syrup. New Orleans, 85119.Google Scholar
Wendlandt, W.M. & Hecht, H. (1966) Reflectance spectroscopy. Interscience, New York and London.Google Scholar
White, W.B., McCarthy, & Scheetz, B.E. (1971) Optical spectra of chromium, nickel, cobalt-containing pyroxenes. Am. Miner. 56, 7289.Google Scholar
Wood, B.J. (1974) Crystal field spectrum of Ni2+ in olivine. Am. Miner. 59, 244248.Google Scholar
Zigan, F. & Rothbauer, R. (1967) Neutronenbeugungsmessungen an brucit. N. Jb. Miner. Mh. 4-5, 137143.Google Scholar