Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T16:21:23.885Z Has data issue: false hasContentIssue false

Preparation of vermiculites for HRTEM

Published online by Cambridge University Press:  09 July 2018

CH. Marcks
Affiliation:
Institut für Bodenkunde und Sonderforschungsbereich 173, der Universität Hannover, Herrenhäuser Straße 2, 3000 Hannover 21, Federal Republic of Germany
H. Wachsmuth
Affiliation:
Institut für Bodenkunde und Sonderforschungsbereich 173, der Universität Hannover, Herrenhäuser Straße 2, 3000 Hannover 21, Federal Republic of Germany
H. Graf V. Reichenbach
Affiliation:
Institut für Bodenkunde und Sonderforschungsbereich 173, der Universität Hannover, Herrenhäuser Straße 2, 3000 Hannover 21, Federal Republic of Germany

Abstract

A technique for preparing vermiculites for examination by high-resolution transmission electron microscopy (HRTEM) has been developed. A TEM-stable expanded phase can be obtained by intercalating n-alkylammonium ions between the silicate layers of a parent biotite. The vermiculite particles were embedded in Spurr resin and centrifuged to improve orientation. Ultra-thin specimens were prepared using an ultramicrotome, the quality and thickness of the sections being monitored by TEM. Lattice images of biotite, Ba-vermiculite and octylammonium-vermiculite, the latter showing a perpendicular arrangement of the alkyl chains relative to the silicate layers, were obtained with a resolution ∼2 Å. The reliability of these images was confirmed by computer simulation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amouric, M., Mercuriot, G. & Baronnet, A. (1981) On computed and observed HRTEM images of perfect mica polytypes. Bull. Mineral. 104, 298–313.Google Scholar
Beneke, K. & Lagaly, G. (1982) The brittle mica-like KNiAs04 and its organic derivatives. Clay Miner. 17, 175–183.CrossRefGoogle Scholar
Brown, J.L. & Rich, C.I. (1968) High-resolution electron microscopy of muscovite. Science 161, 1135–1137.Google Scholar
Cowley, J.M. & Moodie, A.F. (1957) The scattering of electrons by atoms and crystals: I. A new theoretical approach. Acta Cryst. 10, 609619.Google Scholar
Eberhart, J.-P. & Triki, R. (1972) Description d'une technique permettant d'obtenir des coupes minces de mineraux argileux par ultramicrotomie. Application Petude de mineraux argileux interstratifies. J. Microscopie 15, 111–120.Google Scholar
Lagaly, G. (1982) Layer charge heterogeneity in vermiculites. Clays Clay Miner. 30, 215–222.Google Scholar
Lee, S.Y., Jackson, M. & Brown, J.L. (1975) Micaceous occlusions in kaolinite observed by ultramicrotomy and high resolution electron microscopy. Clays Clay Miner. 23, 125–129.CrossRefGoogle Scholar
Nanda, D.N. & Jug, K. (1980) SINDO 1, a semiempirical SCF MO method for molecular binding energy and geometry. I. Approximations and parametrization. Theor. Chim. Acta 57, 95–106.Google Scholar
Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastructure Res. 26, 31–43.CrossRefGoogle ScholarPubMed
Takeda, H. & Ross, M. (1975) Mica polytypism: Dissimilarities in the crystal structures of coexisting IMand 2M, biotite. Am. Miner. 60, 1030–1040.Google Scholar
Vali, H. & Koster, H.M. (1986) Expanding behaviour, structural disorder, regular and random irregular interstratification of 2:1 layer-silicates studied by high-resolution images of transmission electron microscopy. Clay Miner. 21, 827–859.CrossRefGoogle Scholar
Weiss, A., Mehler, A. & Hoffmann, U. (1956) Kationenaustausch und innerkristallines Quellungsvermogen bei den Mineralen der Glimmergruppe. Z. Naturforsch. IIB, 435–438.Google Scholar