Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T05:23:10.816Z Has data issue: false hasContentIssue false

Smectite to illite diagenesis in early Miocene sediments from the hyperthermal western Pannonian Basin

Published online by Cambridge University Press:  09 July 2018

R. F. Sachsenhofer
Affiliation:
Institut für Geowissenschafien, Montanuniversität Leoben, A-8700 Leoben, Austria
G. Rantitsch
Affiliation:
Institut für Geowissenschafien, Montanuniversität Leoben, A-8700 Leoben, Austria
C. Hasenhüttl
Affiliation:
Institut für Geowissenschafien, Montanuniversität Leoben, A-8700 Leoben, Austria
B. Russegger
Affiliation:
Institut für Geowissenschafien, Montanuniversität Leoben, A-8700 Leoben, Austria
B. Jelen
Affiliation:
Institut za Geologija, Geoloski Zavod Ljub(jana, Dimiceva 14. Slo-61000 Ljubljana, Slovenia

Abstract

The smectite to illite transformation in early Miocene sediments was studied in wells and outcrops in the western Pannonian Basin, where magmatic activity caused very high Miocene heat flows (250-400 mW/m2). Although the thermal history is similar, large differences in smectite to illite diagenesis were observed. (1) The boundaries between early/middle and middle/late diagenesis in two wells (Pichla, Radkersburg) and the Maribor area correspond to vitrinite reflectance values of 0.4-0.8 and 1.1-1.5% Rr. Anchimetamorphism starts at ~2.1% Rr. In spite of magmatic heating, the smectite to illite transformation can be modelled using kinetic data proposed for areas with a 'normal' burial diagenesis. (2) Smectite to illite reactions are advanced compared to vitrinite reflectance in the Ribnica-Selnica Trough. This is probably related to fluids with elevated K+ concentrations. (3) Clay mineral alterations lag behind coalification significantly in the Mitterlabilt well. These different correlations indicate that clay mineral thermometry should be used with caution and that factors other than temperature and time can influence clay mineral reactions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bethke, C.M. & Altaner S, (1986) Layer-by-layer mechanism of smectite illitization and application to a new rate law. Clays Clay Miner. 34, 136145.Google Scholar
Dunkl, I. & Demény, A. (1997) Exhumation of the Rechnitz Window at the border of Eastern Alps and Pannonian basin during Neogene extension. Tectonophys. 272, 197211.Google Scholar
Dutta, N.C. (1986) Shale compaction, burial diagenesis, and geopressures: A dynamic model, solution and some results. Pp. 149—172 in: Thermal Modeling in Sedimentary Basins (Burrus, J., editor), l∼dition Technip, Paris.Google Scholar
Ebner, F. & Sachsenhofer, R.F. (1995) Paleogeography, subsidence and thermal history of the Neogene Styrian Basin (Pannonian basin system, Austria). Tectonophys. 242, 133150.Google Scholar
Elliott, W.C. & Matisoff, G. (1996) Evaluation of kinetic models for the smectite to itlite transformation. Clays Clay Miner. 44, 7787.Google Scholar
Essene, E.J. & Peacor, D.R, (1995) Clay mineral thermometry — a critical review. Clays Clay Miner. 43, 540553.Google Scholar
Exner, C. (1976) Die geologische Position der Magmatite des periadriatischen Lineamentes. Verh. Geol. B.-A. 1976, 364.Google Scholar
Faninger, E. (1970) Pohorski tonalit in njegovi difer-enciati. Geologija, 13, 35–104.Google Scholar
Freed, R.L. & Peacor, D.R. (1989) Variability in temperature of the smectite/illite reaction in Gulf Coast sediments. Clay Miner. 24, 171180.Google Scholar
Frey, M. (1987) Very low-grade metamorphism of elastic sedimentary rocks. Pp 9—58 in: Low Temperature Metamorphism (Frey, M., editor). Chapman & Hall, New York.Google Scholar
Hamrla, M. (1989) Progresije in gradienti odsevnosti vitrinita v nekaterih vrtinah severovzhodne slovenije. Rudarsko-Metalurski Zbornik, 36, 371381.Google Scholar
Hillier, S., Mátyás, J., Matter, A. & Vasseur, G. (1995) Illite/smectite diagenesis and its variable correlation with vitrinite reflectances in the Pannonian basin. Clays Clay Miner. 43, 174183.Google Scholar
Hoffmann, J. & Hower, J. (1979) Clay mineral assem-blages as low grade metamorphic geothermometers: Application to the thrust faulted Disturbed Belt of Montana, U.S.A. Pp. 55-79 in: Aspects of Diagenesis (Scholle, P.A. & Schlager, P.R., editors). Soc. Econ. Paleont. & Mineral., Spec. Pub. 26.Google Scholar
Huang, W.-L., Longo, J.M. & Pevear, D.R. (1993) An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays Clay Miner. 41, 162177.Google Scholar
Jelen, B. (1985/86) Poizkus iskanla organskih parame-troy terciarnih sedimentnih kamenin v vzhodni S[oveniji. Geologi/a, 28/29, 183197.Google Scholar
Jelen, B., Anicic, B., Brezigar, A., Buser, S., Cimerman F,, Drobne, K., Monostori, M., Kedves, M., Pavsic, J. & Skaberne, D. (1992) Model of positional relationships for Upper Paleogene and Miocene strata in Slovenia. Pp. 71-72 in: IUGS-SOG Meeting Ancona, Abstracts and .field trips (Montanari, A. et al., editors).Google Scholar
Kisch, H.J. (1987) Correlation between indicators of very low-grade metamorphism. Pp. 227300 in: Low Temperature Metamorphism (Frey, M., editor). Chapman & Hall, New York.Google Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation. J. Metam. Geol. 9, 665670.Google Scholar
Kübler, B. (1984) Les indicateurs des transformations physiques et chimiques dans la diagenèse, température et calorimétrie. Pp. 489—596 in: Thérmométrie et Barométrie Géologiques (Lagache, M., editor). Soc. Franc. Min. Crist., Paris.Google Scholar
Kübler, B. (1990) “Cristallinité” de l ‘illite et mixed-layers: Brève révision. Schweiz. Mineral. Petrogr. Mitt. 70, 8993.Google Scholar
Laubscher, H.P. (1983) The late Alpine (Periadriatic) intrusions and the Insubric Line. Mere. Soc. Geol. It. 26, 2130.Google Scholar
Littke, R., Hantschel, T., Sachsenhofer, R.F. & Wygrala, B. (1993) Absenkungsgeschichte und Kohtenwasserstqffbildung im Oberkarbon des westlichen Emslandes-Eine Simulationsstudie. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle (DGMK), Forschungsbericht 459-2, Hamburg.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray D(ff?action and the Identification and Analysis” of Clay Minerals. Oxford University Press, Oxford.Google Scholar
Pollastro, R.M. (1993) Considerations and applications of the illite/smectite geothermometer in hydrocar-bon-bearing rocks of Miocene to Mississippian age. Clays Clay Miner. 41, 119133.CrossRefGoogle Scholar
Pytte, A.M. & Reynolds, R.C. (1989) The thermal transformation of smectite to illite. Pp. 133 — 140 in: Thermal History of Sedimentary Basins (Naeser, N.D. & McCultoh, T.H., editors). Springer-Verlag, New York.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249—304 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Robert, P. (1985) Histoire Géothermique et Diagenèse Organique, Bull. Centres Rech. Explor.-Prod. Elf Aquitaine, Mem. 8, 345 pp.Google Scholar
Rögl, F. (1996) Stratigraphic correlation of the Paratethys Oligocene and Miocene. Mitt. Ges. Geol. Bergbaustud. Österreichs, 41, 6573.Google Scholar
Sachsenhofer, R.K (1994) Petroleum generation and migration in the Styrian Basin (Pannonian Basin system, Austria): An integrated geochemical and numeric modelling study. Mar. Petrol. Geol. 11, 684701.Google Scholar
Sachsenhofer, R.F. & Littke, R. (1993) Vergleich und Bewertung verschiedener Methoden zur Berechnung der Vitrinitreflexion am Beispiel yon Bohrungen im Steirischen Terti∼irbecken. Zbl. Geol. Paliiont. Teil 1. 1992, 597610.Google Scholar
Sachsenhofer, R.F., Dunkl, I., Hasenhtüttl Ch. & Jelen, B. (1998) Miocene thermal history of the southwestern margin of the Styrian Basin: eoalification and fission track data from the Pohorje/Kozjak area (Slovenia). Tectonophys (in press).CrossRefGoogle Scholar
Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am. Assoc. Petrol. Geol. Bull. 74, 15591570.Google Scholar
Vetde, B. & Espitalié J. (1989) Comparison of kerogen maturation and illite/smectite composition during diagenesis. J. Petrol. Geol. 12, 103110.Google Scholar
Velde, B. & Vasseur, G. (1992) Estimation of the diagenetic smectite/illite transformation in time-temperature space. Am. Miner. 77, 967—976.Google Scholar
Velde, B. & Lanson, B. (1993) Comparison of I/S transformation and maturity of organic matter at elevated temperatures. Clays Clay Miner. 41, 178183.Google Scholar
von Blankenburg, F. & Davies, J.H. (1995) Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14, 120131.Google Scholar
Weaver, C.E. (1989) Clays, Muds, and Shales. Dev. in Sedim. 44. Elsevier, Amsterdam.Google Scholar
Wygrala, B.P. (1988) Integrated computer-aided basin modeling applied to analysis of hydrocarbon generation histo∼2r in a Northern Italian oil field. Org. Geochem. 13, 187197.Google Scholar
Znidarcic, M. & Mioc, P. (1988) Osnova Geoloska Karta SFRJ, Maribor in Leibnitz, 1:100000, Geoloskega Zavoda, Beograd.Google Scholar