Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T18:07:18.415Z Has data issue: false hasContentIssue false

Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of smectites

Published online by Cambridge University Press:  09 July 2018

C. Mosser
Affiliation:
Centre de Géochimie de la Surface, 1 rue Blessig, 67084 Strasbourg Cedex, France
M. Mestdagh
Affiliation:
Laboratoire de Chimie des Interfaces, Université Catholique de Louvain, Place Croix du Sud 1, 1348 Louvain la Neuve, Belgique
A. D'Ecarreau
Affiliation:
Laboratoire de Pétrologie de la Surface, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
A. J. Herbillon
Affiliation:
Centre de Pédologie Biologique, 17 rue Notre Dame des Pauvres BP.5, 54500 Vandoeuvre Les Nancy, France

Abstract

ESR has been used to obtain information on the octahedral or interlamellar position of Cu(II) in natural smectites from Burkina Faso (West Africa). On the basis of 060 XRD reflections and chemical data, these smectites were found to be Al-rich and dioctahedral. After both Mehra & Jackson, and De Endredy deferrification treatments, the Cu contents remained high (4500 and 22000 p.p.m., respectively). The Cu(II) ESR spectra of these deferrated smectites were compared to those of two reference smectites for which the structural position of Cu(II) was precisely known. The interlayer Cu(II) signal was obtained on a Cu-saturated Camp Berteau montmorillonite, while the octahedral Cu(II) signal was obtained on a synthetic Cu-rich smectite. For this latter reference sample, EXAFS spectroscopy provided evidence that Cu was in six-fold coordination in the octahedral sheet only, and was not exchangeable. In agreement with the experiments by Clementz, Pinnavaia and Mortland, a shift in the g⊥ ESR signal was observed when the air-dried Cu-saturated Camp Berteau montmorillonite (g⊥ = 2·05) was soaked in water for 48 h (g⊥ = 2·13). A small shift in the opposite sense was observed for the synthetic Cu smectite (g⊥ = 2·05 for the air-dried sample, g⊥ = 2·02 for the water-soaked sample). For the two natural smectites a small shift similar to that for the synthetic Cu-smectite was observed. These results indicate that up to 10% of the Cu atoms substitute for Al-Mg-Fe atoms in the octahedral sheets of the smectites studied.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, B.R. Vincent, E.J. (1978) Electron spin resonance studies of iron oxides associated with the surface of kaolins. Clays Clay Miner., 26, 263–272.CrossRefGoogle Scholar
Besnus, Y. Rouault, R. (1973) Méthode d'analyse des roches au spectromdtre d'arc a lecture directe par un dispositif d'électrode rotative. Analusis, 2, 111–116.Google Scholar
Besson, G., Decarreau, A., Manceau, A., Sanz, J., Suquet, H., (1990). Organisation interne du feuillet. In: Les Materiawc Argileux: Structures, Propriétés, Applications (A. Decarreau, editor). Soc. Fr. Mineral. Cristall. (SFMC)Google Scholar
Bonnin, D., Muller, S. Callas, G. (1982) Le fer dans les kaolins. Etude par spectrometries RPE, Mossbauer, EXAFS. Bull. Mineral., 105, 467–475.Google Scholar
Bonnin, D., Callas, G., Suquet, H. & Pezerat, H. (1985) Intracristalline distribution of Fe3 in Garfield nontronite; a spectroscopic study. Phy. Chem. Minerals, 12, 55–64.Google Scholar
Burns, R.G. (1970) Mineralogical Application of Crystal Field Theory.Cambridge University Press, Cambridge.Google Scholar
Brown, D.R. Kevan, L. (1988) Aqueous coordination and location of exchangeable Cu2+ cations in montmorillonite clay studied by electron spin resonance and electron pin-echo modulation. J. Am. Chem. Soc., 110, 2743–2748.Google Scholar
Chukhrov, F.V. Anossov, F.Y. (1950) Mem. Soc. Russe Min., 79, 2327. Google Scholar
Chukhrov, F.V., Zvyagin, B.B., Ermilova, L.P., Gorshov, A.I. Rudnitskaya, E.S. (1969) The relation between chrysocolla, medmontite and copper-halloysite. Proc. Int. Clay Conf. Tokyo, 141150.Google Scholar
Clementz, D.M., Pinnavaia, T.J., Mortland, M.M. (1973) Stereochemistry of hydrated copper(II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study. J. Phys. Chem., 77, 196–200.CrossRefGoogle Scholar
Clementz, D.M., Mortland, M.M. Pinnavaia, T.J. (1974) Properties of reduced charge montmorillonite: hydrated Cu(II) ion as a spectroscopic probe. Clays Clay Miner., 22, 49–57.Google Scholar
Creach, M. (1989) Accumulation supergçne de cuivre en milieu latéritique: étude pétrologique, cristallochimique et géochimique de Valteration du sham de Sante Blandina (Itapeva, Brésil). Thèse Doct. Univ. Poitiers, France.Google Scholar
Creach, M., Decarreau, A. Nahon, D., (1990) Copper distribution in silicated weathering products of Santa Blandina skarn (Itapeva, Brazil). Submitted to Clay Miner. Google Scholar
Decarreau, A. (1980) Cristallogenese expérimentale des smectites magnèsiennes: hectorite, stevensite. Bull. Miner., 103, 579–590.Google Scholar
Decarreau, A. (1981) Cristallogenèse à basse température de smectites trioctaédriques par vieillissement de coprecipites silicometalliques de formule (Si4_xAlx) Mg2+)011nH2O, où x varie de.0 à 1 et M2+ = Mg, Ni, Co, Zn, Fe, Cu, Mn. C.R.Acad. Sci. Paris,, 292, 61–64.Google Scholar
Decarreau, A. (1983) Etude experimentale de la cristallogenese des smectites. Mesures des coefficients de partage smectite trioctaedrique/solution aqueuse pour les metaux M2+ de la l6re serie de transition. Sci. Geol., 74, 185p.Google Scholar
Decarreau, A. (1985) Partitioning of divalent transition elements between octahedral sheet of trioctahedral smectites and water, Geochim. Cosmochim. Acta, 49, 1537–1544.CrossRefGoogle Scholar
Decarreau, A., Colin, F., Herbillon, A., Manceau, A., Nahon, D., Paquet, H., Trauth-Badaud, D. Trescases, J.J. (1987) Domain segregation in Ni-Fe-Mg-smectites. Clays Clay Miner., 35, 1–10.CrossRefGoogle Scholar
De Endredy, A.S. (1963) Estimation of free iron oxides in soils and clays by a photolytic method. Clay Miner. Bull. 29, 209217.CrossRefGoogle Scholar
Du Plessis, S.F. & Burger, R. du T. (1971) Die spesifieke adsorpsie van koper deur kleinminerale en grondfraksies. Agrochemophysica, 3, 110.Google Scholar
Forbes, E.A., Posner, A.M. Quirk J,P. (1976) The specific adsorption of divalent Cd, Co, Cu, Pb and Zn on goethite. J. Soil Sci., 27, 154–166.CrossRefGoogle Scholar
Hall, P.L. (1980) The application of electron spin resonance spectroscopy to studies of clay minerals: I. isomorphous substitutions and external surface properties. Clay Miner., 15, 321–335.Google Scholar
Herbillon, A J., Mestdagh, M.M., Vielvoye, L. Derouane, E.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner., 11, 201–220.CrossRefGoogle Scholar
Ildefonse, P., Manceau, A., Prost, D. & Toledo-Groke, M.C. (1986) Hydroxy-Cu-vermiculite formed by weathering of Fe-biotites at Salobo, Carajas, Brazil. Clays Clay Miner., 34, 338–345.CrossRefGoogle Scholar
Jones, J.P., Angel, B.R. Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinite. Clay Miner., 10, 257–269.CrossRefGoogle Scholar
McBride, M.B. (1976) Hydration structure of exchangeable Cu2+ in vermiculite and smectite. Clays Clay Miner., 24, 211–212.Google Scholar
McBride, M.B. (1982) Hydrolysis and dehydration reactions of exchangeable Cu2+ on hectorite. Clays Clay Miner., 30, 200–206.Google Scholar
McBride, M.B. Mortland, M.M. (1974) Copper(II) interactions with montmorillonites: evidence from physical methods. Soil Sci. Soc. Am. Proc., 38, 408–414.CrossRefGoogle Scholar
McLaren, R.G. Crawford, D.W. (1973) Studies on soil copper. II. The specific adsorption of copper by soils. J. Soil Sci., 24, 443–452.Google Scholar
Manceau, A., Callas, G. Decarreau, A. (1985) Nickel-bearing clay minerals: I. Optical spectroscopy study of nickel crystal chemistry. Clay Miner., 20, 367–387.Google Scholar
Manceau, A. Calas, G. (1986) Nickel-bearing clay minerals: II. Intracrystalline distribution of nickel: an X-ray absorption study. Clay Miner., 21, 341–360.CrossRefGoogle Scholar
Manceau, A., Bonnin, D., Kaiser, P. Fretigny, C. (1988) Polarized EXAFS spectra of biotite and chlorite. Phys. Chem. Miner., 16, 180–185.CrossRefGoogle Scholar
Meads, R.E. Malden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner., 10, 313–345.CrossRefGoogle Scholar
Mehra, O.P. Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 7, 317–327.Google Scholar
Mestdagh, M.M., Vielvoye, L. Herbillon, A.J. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Miner., 15, 1–13.CrossRefGoogle Scholar
Mestdagh, M.M., Herbillon, A., Rodrique, L. Rouxhet, P.G. (1982) Evaluation du role du fer structural sur la cristallinit^ des kaolinites. Bull. Mineral., 105, 457–466.Google Scholar
Mosser, C. Zeegers, H. (1988) The mineralogy and geochemistry of two copper-rich weathering profiles in Burkina Faso, West Africa. J. Geochem. Explor., 30, 145–166.CrossRefGoogle Scholar
Olivier, D., Vedrine, J.C. Pezerat, H. (1975) Application de la resonance paramagnetique electronique a la localisation du Fe3+ dans les smectites. Bull. Groupe franc. Argiles XXVII, 153165.CrossRefGoogle Scholar
Parisot, J.C. (1989) Ualteration lateritique de protores cupriferes au Bresil. These Doct. Univ. Poitiers, France.Google Scholar
Raoux, D., Petiau, J., Bondot, P., Calas, G., Fontaine, A., Lagardep, P., Levitz, P., Loupias, G. Sadoc, A. (1980) L'EXAFS applique aux determinations structurales de milieux desordonnes. Rev. Phys. Appl., 15, 10791094.CrossRefGoogle Scholar
Samuel, J. Rouault, R. (1983) Les méthodes d'analyse des matériaux géologiques pratiqués au Laboratoire d'analyses Spectrométriques. Rep. Centre Sedim. Geochim. Surf. Strasbourg. Google Scholar
Samuel, J., Rouault, R. Besnus, Y. (1985) Analyse multiélémentaire standardisée des matériaux géologiques en spectrometrie d'emission par plasma à couplage inductif. Analusis, 13, 312–317.Google Scholar
Van Oosterwyck-Gastuche, M.C. (1970) La structure de la chrysocolle. C.R. Acad. Sc. Paris, 271, 1837–1840.Google Scholar
Von Jaggi, H. Oswald, H.R. (1961) Die Kristallstruktur des Kupferhydroxids, Cu(OH)2. Acta Cryst., 14, 1041–1045.CrossRefGoogle Scholar
Wertz, J.E. Bolton, J.R. (1972) Electron Spin Resonance. McGraw-Hill, New York.Google Scholar