Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T11:36:28.205Z Has data issue: false hasContentIssue false

The structure of the kaolinite minerals — a FT-Raman study

Published online by Cambridge University Press:  09 July 2018

R. L. Frost*
Affiliation:
Centre for Instrumental and Developmental Chemistry, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane Q4001, Australia

Abstract

The Fourier transform Raman spectra of the kaolinite minerals have been measured in the 50–3800 cm−1 region using near infrared spectroscopy. Kaolinites are characterized by remarkably intense bands in the 120–145 cm−1 region. These bands, attributed to the O-Si-O and O-Al-O symmetric bending modes, are both polymorph and orientation dependent. The 200–1200 cm−1 spectral range is a finger-print region for clay minerals and each kaolinite clay has its own characteristic spectrum. The structure of clays is fundamentally determined by the position of hydroxyl groups. Fourier-transform Raman spectroscopy readily enables the hydroxyl stretching region to be examined allowing identification of the component bands. The advantages of FT-Raman spectroscopy are shown to enhance the study of the kaolinite structure.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balachandran, U. & Eror, N.G. (1982) Raman spectrum of titanium dioxide. J. Solid State Chem. 42, 276282.Google Scholar
Blaha, J.J. & Rosasco, G.J. (1978) Raman microprobe spectra of individual microcrystals and fibres of talc, tremolite and related silica minerals. Anal. Chem. 50, 892896.Google Scholar
Brindley, G.W., Chih-Chun Kao, Harrison, J.L., Lipsiscas, M. & Raythatha, R. (1986) Relation between the structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner. 34, 233249.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331-363 in: Infrared Spectra of Minerals (Farmer, V.C., editor), Mineralogical Society, London.CrossRefGoogle Scholar
Farmer, V.C. & Russell, J.D. (1964) The infrared spectra of layered silicates. Spectrochim. Acta, 20, 11491173.Google Scholar
Friesen, W.I. & Michaelian, K.H. (1986) Infrared Physics, 26, 235239.Google Scholar
Frost, R.L. (1995) Fourier transform Raman spectroscopy of kaolinite, dickite and halloysite. Clays Clay Miner. 43, 191195.Google Scholar
Frost, R.L., Bartlett, J.R. & Fredericks, P.M. (1993) Fourier transform Raman spectra of kandite clays. Spectrochim. Acta, 49A, 667–674.Google Scholar
Griffiths, W.P. (1969) Raman spectral studies on rock forming minerals 1. Orthosilicates and cyclosilicates. J. Chem. Soc. A, 9, 13721377.Google Scholar
Herzberg, G. (1945) Molecular Spectra and Molecular Structure. Van Nostrand, New York.Google Scholar
Ishii, M., Shimanouchi, T. & Nakahira, M. (1967) Far infrared absorption of layer silicates. Inorg. Chim. Acta, 1, 387392.Google Scholar
Johnston, C.T, Agnew, S.F. & Bish, D.L. (1990) Polarised single crystal Fourier Transform infrared microscopy of Ouray dickite and Keokuk kaolinite. Clays Clay Miner. 38, 573583.Google Scholar
Johnston, C.T., Sposito, G. & Birge, R.R. (1985) Raman spectroscopic study of kaolinite in aqueous suspension. Clays Clay Miner. 33, 483489.Google Scholar
Lazarev, A.N. (1972) Vibrational Spectra and Structure of Silicates, Plenum Press, New York, USA.Google Scholar
Ledoux, R.L. & White, J.L. (1964) Infrared study of selective deuteration of kaolinite and halloysite at room temperature. Science, 145, 4749.CrossRefGoogle ScholarPubMed
Loh, E. (1973) Optical vibrations of sheet silicate. J. Phys. C: Solid State Phys. 6, 10911104.Google Scholar
Michaelian, K.H. (1986) The Raman spectrum of kaolinite #9 at 21°. Can. J. Chem, 64, 285289.CrossRefGoogle Scholar
Ohsaka, T., Izumu, F. & Fujiki, Y. (1978) Raman spectrum of anatase, TiO2 . J. Raman Spectrosc. 7, 321324.Google Scholar
Pajcini, V. & Dhamelincourt, P. (1994) Raman study of OH-stretching vibrations in kaolinite at low temperature. Appl. Spectrosc. 48, 638641.Google Scholar
Prost, R., Damene, A.S., Huard, E., Driard, I. & Leydecker, J.P. (1989) Infrared study of structural OH in kaolinite, dickite and nacrite and poorly crystalline kaolinite at 5 to 600K. Clays Clay Miner.. 37, 464468.Google Scholar
Rosasco, G.J. & Blaha, J.J. (1980) Raman microprobe spectra and vibrational mode assignments of talc. Appl. Spectrosc. 34(2), 140-144.Google Scholar
Rouxhet, P.G., Samudacheata, N., Jacobs, H. & Anton, O. (1977) Attribution of the OH stretching bands of kaolinite. Clay Miner. 12, 171-178.Google Scholar
Wada, K. (1967) A study of hydroxyl groups in kaolin minerals utilising selective deuteration and infrared spectroscopy. Clay Miner. 7, 5161.Google Scholar
White, J.L., Laycock, A. & Cruz, M. (1970) Infrared studies of proton delocalisation in kaolinite. Bull. Groupe franc. Argiles, 22, 157165.CrossRefGoogle Scholar
Wiewiora, A., Wieckowski, T. & Sokolowska, A. (1979) The Raman spectra of kaolinite subgroup minerals and of pyrophyllite. Arch. Mineral. 135, 5–14.Google Scholar