Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T00:43:16.307Z Has data issue: false hasContentIssue false

A study of the birefringence exhibited by celadonite solutions subjected to electric fields

Published online by Cambridge University Press:  09 July 2018

E. D. Baily*
Affiliation:
Department of Physics, University of Khartoum, Khartoum, Sudan

Abstract

This paper reports an electric birefringence study on dilute solutions of the clay mineral, celadonite. The results show that celadonite particles in solution have the form of rectangular platelets and are characterized by a permanent dipole-moment perpendicular to the plane of the platelet and an induced dipole-moment in the plane of the platelet along the longest dimension. It is suggested that the permanent dipole-moment is an inherent property of the atomic structure of the platelet, whilst the induced dipole-moment is a consequence of the ion-atmosphere surrounding the celadonite particles. The paper also demonstrates the usefulness of electro-optic techniques in studying problems in clay minerology.

Résumé

Résumé

Le présent document rend compte d'un étude de biréfringence électrique sur des solutions diluées du minerai argileux, la céladonite. Les résultats montrent que les particules de céladonite en solution se présentent en forme de plaquettes perpendiculaires et se caractérisent par un moment dipolaire permanent perpendiculaire à la surface plane de la plaquette et par un moment dipolaire induit sur la pattie plane de la plaquette le long de sa dimension la plus longue. Il est suggéré que le moment dipolaire permanent est une propriété inhérente de la structure atomique de la plaquette tandis que le moment dipolaire induit est une conséquence de l'atmosphére ionique entourant les particules de céladonite. Le document démontre en outre l'utilité des techniques électro-optiques dans l'étude des problèmes de la minéralogie argileuse.

Kurzreferat

Kurzreferat

Dieser Artikel berichtet über eine elektrische Doppelbrechungsstudie in bezug auf in Lösung befindliches Seladonit. Es hat sich ergeben, dass Seladonitteilchen in der Lösung rechteckige Plättchen sind, bei denen einerseits ein permanentes Dipolmoment senkrecht zu der Plättchenebene und andererseits ein induziertes Dipolmoment in axialer Richtung der Plättchenebene besteht. Es wird angenommen, dass das permanente Dipolmoment ein der Atomstruktur des Plättchens eigenes Merkmal ist, während das induzierte Dipolmoment auf die die Seladonitteilchen umgebende Ionenatmosphäre zurückzuführen ist. Es wird auch herausgestellt, wie nützlich elektro-optische Verfahren in der Tonmineralogie sein können.

Resumen

Resumen

Este trabajo informa sobre un estudio de birrefringencia eléctrica en soluciones diluidas del mineral de arcilla, celadonita. Los resultados muestran que las particulas de celadonita en solución tienen la forma de laminillas rectangulares y están caracterizadas por un momento dipolar permanente perpendicular al plano de la laminilla, y un momento dipolar inducido en el plano de la laminilla en la dirección de la dimensión más larga. Se sugiere que el momento dipolar permanente es una propiedad inherente de la estructura de la laminilla, mientras que el momento dipolar inducido es consecuencia de la atmósfera ionizada que rodea alas particulas de celadonita. El trabajo demuestra asimismo la utilidad de las técnicas electro-ópticas en el estudio de problemas en la mineralogia de la arcilla.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baily, E.D. (1975) Rev. Sci. Instrum. 46, 1105.CrossRefGoogle Scholar
Benoit, H. (1951) Ann. Phys. 6, 561.Google Scholar
Broersma, S. (1960) J. chem. Phys. 32, 1626.CrossRefGoogle Scholar
Brown, B. & Jennings, B.R. (1973) J. Colloid Sci. 43, 172.CrossRefGoogle Scholar
Grimm, R.E. (1953) Clay Minerology. McGraw Hill, New York.Google Scholar
Jennings, B.R., Brown, B. & Plummer, H. (1970) J. Colloid Interface Sci. 32, 606.CrossRefGoogle Scholar
Kerr, J. (1875) Phil. Mag. 50, 337.Google Scholar
Khan, A. & Lewis, D. (1954) J. phys. Chem. 58, 801.Google Scholar
Michaels, A.S. & Bolger, J.C. (1962) Ind. Eng. Chem. Fundem. 1, 153.Google Scholar
Norton, H. (1939) Phys. Rev. 55, 668.Google Scholar
O'Konski, C.T. & Zimm, B.H. (1950) Scienc. 111, 113.Google Scholar
Perrin, T. (1934) J. Phys. Radiu. 5, 497.Google Scholar
Peterlin, A. & Stuart, H.A. (1939) Z. Physi. 112, 129.Google Scholar
Sakmann, B.W. (1955) J. Opt. Soc. Amer. 45, 66.Google Scholar
Scheper, J.S., Miller, R.J., Brown, D.S. & Beavers, A.H. (1977) Soil Sci. Soc. Amer. Proc. (in press).Google Scholar
Shah, MJ. & Hart, CM. (1963) J. Ibm. Res. Develop. 7, 1.Google Scholar
Shah, MJ. (1963) J. phys. Chem. 67, 2215.Google Scholar
SWARTZEN-ALLEN, S.L. & Matijevic, E. (1974) Chem. Rev. 74, 397.Google Scholar
Thurston, G.B. & Bowling, D.I. (1968) J. Colloid Interface Sci. 30, 31.Google Scholar
Van Olphen, H. (1963) An Introduction to Clay Colloid Chemistry, pp. 90-93. Interscience, New York.Google Scholar
Yoshioka, K. & Watanabe, H. (1969) Physical Principles and Techniques of Protein Chemistry, Chapter 7. Academic Press, New York.Google Scholar