Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T10:48:54.319Z Has data issue: false hasContentIssue false

Application of supported Cu–Ru catalysts for the removal of trace olefins in aromatics

Published online by Cambridge University Press:  25 October 2022

Xiao Liang
Affiliation:
East China University of Science and Technology, Shanghai 200237, China
Naiwang Liu*
Affiliation:
East China University of Science and Technology, Shanghai 200237, China
Li Shi
Affiliation:
East China University of Science and Technology, Shanghai 200237, China
Xuan Meng
Affiliation:
East China University of Science and Technology, Shanghai 200237, China

Abstract

Exploring reliable hydrogenation catalysts to remove trace olefins in aromatic hydrocarbons through hydrogenation is an important topic. In this paper, a bimetallic Cu–Ru/montmorillonite (Cu–Ru/M) catalyst was prepared using a step-by-step impregnation method, and the effects of bimetallic catalysts on removing olefins were assessed. The catalysts were characterized using X-ray diffraction, Brunauer–Emmett–Teller specific surface area, inductively coupled plasma atomic emission spectrometry, high-resolution transmission electron microscopy and temperature-programmed reduction of H2. The results show that there is a strong interaction between Cu and Ru on the Cu–Ru/M catalyst, which improves the dispersion of the metals on the surface of the support M. The hydrogen spillover phenomenon of Cu–Ru/M enhances its activity and adsorption capacity for hydrogen species. The catalytic performance test confirmed that the bimetallic catalyst has significantly greater activity and stability. The optimal loadings are 5% copper and 1% ruthenium, and the performance of this catalyst is comparable to those of noble-metal Pt/M catalysts.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Huaming Yang

References

Álvarez-Rodríguez, J., Guerrero-Ruiz, A., Rodríguez-Ramos, I. & Arcoya, A. (2008) Changes in the selective hydrogenation of citral induced by copper addition to Ru/KL catalysts. Microporous and Mesoporous Materials, 110, 186196.10.1016/j.micromeso.2007.06.006CrossRefGoogle Scholar
Asedegbega-Nieto, E., Bachiller-Baeza, B., Guerrero-Ruíz, A. & Rodríguez-Ramos, I. (2006) Modification of catalytic properties over carbon supported Ru–Cu and Ni–Cu bimetallics. Applied Catalysis A: General, 300, 120129.10.1016/j.apcata.2005.10.061CrossRefGoogle Scholar
Ban, C., Yang, S., Kim, H. & Kim, D.H. (2019) Effect of Cu addition to carbon-supported Ru catalysts on hydrogenation of alginic acid into sugar alcohols. Applied Catalysis A: General, 578, 98104.10.1016/j.apcata.2019.04.003CrossRefGoogle Scholar
Centi, G. & Perathoner, S. (1995) Adsorption and reactivity of no on copper-on-alumina catalysts: II. Adsorbed species and competitive pathways in the reaction of no with NH3 and O2. Journal of Catalysis, 152, 93v102.10.1006/jcat.1995.1063CrossRefGoogle Scholar
Chen, Y., Yu, Z., Chen, Z., Shen, R., Wang, Y., Cao, X. et al. (2016) Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Research, 9, 26322640.CrossRefGoogle Scholar
Fu, J., Yang, K., Ma, C., Zhang, N., Gai, H., Zheng, J. & Chen, B.H. (2016) Bimetallic Ru–Cu as a highly active, selective and stable catalyst for catalytic wet oxidation of aqueous ammonia to nitrogen. Applied Catalysis B: Environmental, 184, 216222.10.1016/j.apcatb.2015.11.031CrossRefGoogle Scholar
Huang, X., Liu, Y., Wen, H., Shen, R., Mehdi, S., Wu, X. et al. (2021) Ensemble-boosting effect of Ru–Cu alloy on catalytic activity towards hydrogen evolution in ammonia borane hydrolysis. Applied Catalysis B: Environmental, 287, 119960.10.1016/j.apcatb.2021.119960CrossRefGoogle Scholar
Kaźmierczak, K., Salisu, A., Pinel, C., Besson, M., Michel, C. & Perret, N. (2021) Activity of heterogeneous supported Cu and Ru catalysts in acceptor-less alcohol dehydrogenation. Catalysis Communications, 148, 106179.10.1016/j.catcom.2020.106179CrossRefGoogle Scholar
Li, J., Wilken, N., Kamasamudram, K., Currier, N.W., Olsson, L. & Yezerets, A. (2013) Characterization of active species in Cu–beta zeolite by temperature-programmed reduction mass spectrometry (TPR-MS). Topics in Catalysis, 56, 201204.10.1007/s11244-013-9952-1CrossRefGoogle Scholar
Liu, J., Liu, N., Ren, K., Shi, L. & Meng, X. (2017) Sulfated zirconia synthesized in a one step solvent-free method for removal of olefins from aromatics. Industrial & Engineering Chemistry Research, 56, 76937699.10.1021/acs.iecr.7b01660CrossRefGoogle Scholar
Lu, F., Yu, C., Meng, X., Chen, G. & Zhao, P. (2017) Degradation of highly concentrated organic compounds over a supported Ru–Cu bimetallic catalyst. New Journal of Chemistry, 41, 32803289.10.1039/C6NJ04103ECrossRefGoogle Scholar
Ma, Y.J., Cai, Y.P., Wang, G.J., Cui, M.J., Sun, C., Cao, Z.H. & Meng, X.K. (2019) Enhanced thermal stability by heterogeneous interface and columnar grain in nanoscale Cu/Ru multilayers. Materials Science and Engineering: A, 742, 751759.10.1016/j.msea.2018.10.048CrossRefGoogle Scholar
Poels, E.K. & Brands, D.S. (2000) Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction. Applied Catalysis A: General, 191, 8396.10.1016/S0926-860X(99)00307-5CrossRefGoogle Scholar
Schittkowski, J., Tölle, K., Anke, S., Stürmer, S. & Muhler, M. (2017) On the bifunctional nature of Cu/ZrO2 catalysts applied in the hydrogenation of ethyl acetate. Journal of Catalysis, 352, 120129.10.1016/j.jcat.2017.05.009CrossRefGoogle Scholar
Soares, A.V.H., Salazar, J.B., Falcone, D.D., Vasconcellos, F.A., Davis, R.J. & Passos, F.B. (2016) A study of glycerol hydrogenolysis over Ru–Cu/Al2O3 and Ru–Cu/ZrO2 catalysts. Journal of Molecular Catalysis A: Chemical, 415, 2736.10.1016/j.molcata.2016.01.027CrossRefGoogle Scholar
Stassi, J.P., Zgolicz, P.D., Rodriguez, V.I., de Miguel, S.R. & Scelza, O.A. (2015) Ga and In promoters in bimetallic Pt based catalysts to improve the performance in the selective hydrogenation of citral. Applied Catalysis A: General, 497, 5871.10.1016/j.apcata.2015.01.046CrossRefGoogle Scholar
Stefanov, P., Todorova, S., Naydenov, A., Tzaneva, B., Kolev, H., Atanasova, G. et al. (2015) On the development of active and stable Pd–Co/γ-Al2O3 catalyst for complete oxidation of methane. Chemical Engineering Journal, 266, 329338.10.1016/j.cej.2014.12.099CrossRefGoogle Scholar
Su, F.B., Lee, F.Y., Lv, L., Liu, J.J., Tian, X.N. & Zhao, X.S. (2007) Sandwiched ruthenium/carbon nanostructures for highly active heterogeneous hydrogenation. Advanced Functional Materials, 17, 19261931.10.1002/adfm.200700067CrossRefGoogle Scholar
Tian, Y., Meng, X. & Shi, L. (2013) Synthesis of SO3H-functionalized ionic liquids and their novel application in removal of trace olefins from aromatics. Industrial & Engineering Chemistry Research, 52, 66556661.10.1021/ie4002734CrossRefGoogle Scholar
Wang, L., Meng, X., Wang, S., Shi, L., Hu, X. & Liu, N. (2021) Research and application of a non-noble metal catalyst in the removal of trace olefins from aromatics. New Journal of Chemistry, 45, 39013908.CrossRefGoogle Scholar
Yao, J., Liu, N., Shi, L. & Wang, X. (2015) Sulfated zirconia as a novel and recyclable catalyst for removal of olefins from aromatics. Catalysis Communications, 66, 126129.CrossRefGoogle Scholar
Zhang, X., Li, H.-R., Zhao, F.-G., Cui, X.-Y., Ye, F. & He, L.-N. (2021b) Green process for hydrogenation of methyl ricinoleate to methyl 12-hydroxystearate over diatomite supported Cu/Ni bimetallic catalyst. Green Chemical Engineering, 2, 187196.10.1016/j.gce.2020.09.011CrossRefGoogle Scholar
Zhang, J., Gao, Z., Wang, S., Wang, G., Gao, X., Zhang, B. et al. (2019) Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nature Communications, 10, 4166.10.1038/s41467-019-11970-8CrossRefGoogle ScholarPubMed
Zhang, A., Wu, S., Li, Y., Zhang, Q., Hu, Q., Wu, J. et al. (2021a) A novel synergetic effect between Ru and Cu nanoparticles for Ru–Cu/Al2O3 causes highly efficient photothermocatalytic Co2 reduction with good durability. Applied Surface Science, 556, 149821.10.1016/j.apsusc.2021.149821CrossRefGoogle Scholar
Zhao, Q., Yao, J., Shi, L. & Wang, X. (2016) Effect of calcination temperature on structure, composition and properties of S2O82−/ZrO2 and its catalytic performance for removal of trace olefins from aromatics. RSC Advances, 6, 8455384561.10.1039/C6RA15226KCrossRefGoogle Scholar
Zheng, R., Porosoff, M.D., Weiner, J.L., Lu, S., Zhu, Y. & Chen, J.G. (2012) Controlling hydrogenation of C=C and C=O bonds in cinnamaldehyde using silica supported Co–Pt and Cu–Pt bimetallic catalysts. Applied Catalysis A: General, 419–420, 126132.10.1016/j.apcata.2012.01.019CrossRefGoogle Scholar
Zheng, Y., Wang, J., Li, D., Liu, C., Lu, Y., Lin, X. & Zheng, Z. (2021) Highly efficient catalytic pyrolysis of biomass vapors upgraded into jet fuel range hydrocarbon-rich bio-oil over a bimetallic Pt–Ni/γ-Al2O3 catalyst. International Journal of Hydrogen Energy, 46, 2792227940.10.1016/j.ijhydene.2021.06.082CrossRefGoogle Scholar
Zhu, Y., Yang, M., Zhang, Z., An, Z., Zhang, J., Shu, X. & He, J. (2021) NiCu bimetallic catalysts derived from layered double hydroxides for hydroconversion of n-heptane. Chinese Chemical Letters, 33, 20692072.10.1016/j.cclet.2021.08.120CrossRefGoogle Scholar
Zhuang, Y., Currie, R., McAuley, K.B. & Simakov, D.S.A. (2019) Highly-selective CO2 conversion via reverse water gas shift reaction over the 0.5 wt% Ru-promoted Cu/ZnO/Al2O3 catalyst. Applied Catalysis A: General, 575, 7486.10.1016/j.apcata.2019.02.016CrossRefGoogle Scholar