Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-21T20:39:35.576Z Has data issue: false hasContentIssue false

Enhanced fluorescence of selected cationic dyes adsorbed on reduced-charge montmorillonite

Published online by Cambridge University Press:  09 July 2018

P. Pustková*
Affiliation:
Department of Analytical Chemistry and Material Testing, VŠB-Technical University of Ostrava, 17 Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
Z. Klika
Affiliation:
Department of Analytical Chemistry and Material Testing, VŠB-Technical University of Ostrava, 17 Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
J. Preclíková
Affiliation:
Department of Chemical Physics and Optics, Charles University Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic
T. M. Grygar
Affiliation:
Institute of Inorganic Chemistry AS CR, v.v.i., Husinec-Řež 1001, 250 68 Řež, Czech Republic

Abstract

The aggregation of three cationic dyes (CD), crystal violet (CV), Nile blue (NB) and rhodamine B (RB) in aqueous solution was studied by visible absorption spectrophotometry and compared with methylene blue (MB). The distribution of the dye species (monomers, dimers, trimers, and tetramers) in aqueous solutions with different concentrations of dye was calculated using equilibrium stepwise aggregation constants Kn. These cationic dyes were intercalated into montmorillonite (SAz-1) and its reduced charge form (RC-SAz(210)) prepared by heating lithium montmorillonite (Li/SAz-1) at 210ºC. The fluorescence of fully saturated CD/SAz and low-CD loaded CD/RC-SAz(210) complexes was studied. Visible absorption spectra of CD aqueous solutions and visible absorption spectra and X-ray diffraction patterns (d001) of the CD/SAz and CD/RC-SAz( 210) solid complexes were obtained and evaluated. Large fluorescence intensities were found for CV/RC-SAz(210) and NB/RC-SAz(210) complexes in the same way as for the complex of methylene blue with reduced-charge montmorillonite MB/RCM(210) described previously.

Type
Research Papers
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvero, R.,Alba, M.D.,Castro, M.A. & Trillo, J.M. (1994) Reversible migration of lithium in montmorillonites. The Journal of Physical Chemistry, 98,7848–7853.CrossRefGoogle Scholar
Bergmann, K. & O’Konski, C.T. (1963) A spectroscopic study of methylene blue monomer,di mer, and complexes with montmorillonite. The Journal of Physical Chemistry, 67,2169–2177.CrossRefGoogle Scholar
Bujdák, J. (2006) Effect of the layer charge of clay minerals on optical properties of organic dyes. Applied Clay Science, 34,58–73.Google Scholar
Bujdák, J. & Komadel, P. (1997) Interaction of methylene blue with reduced charge montmorillonite. Journal of Physical Chemistry B, 101,9065–9068.CrossRefGoogle Scholar
Bujdák, J.,Janek, M.,Madejová, J. & Komadel, P. (1998) Influence of the layer charge density of smectites on the interaction with methylene blue. Journal of the Chemical Society, Faraday Transactions, 94, 3487–3492.Google Scholar
Bujdák, J.,Janek, M.,Madejová, J. & Komadel, P. (2001) Methylene blue interactions with reduced-charge smectites. Clays and Clay Minerals, 49,244–254.CrossRefGoogle Scholar
Bujdák, J.,Iyi, N. & Fujita, T. (2002) The aggregation of methylene blue in montmorillonite dispersions. Clay Minerals, 37,121–133.Google Scholar
Čeklovský, A.,Czímerová, A.,Pentrák, M. & Bujdák, J. (2008) Spectral properties of TMPyP intercalated in thin films of layered silicates. Journal of Colloid Interface Science, 324,240–245.Google Scholar
Czímerová, A.,Bujdák, J. & Dohrmann, R. (2006) Traditional and novel methods for estimating the layer charge of smectites. Applied Clay Science, 34, 2–13.CrossRefGoogle Scholar
Dobrogowska, C.,Hepler, L.G.,Ghosh, D.K. & Yariv, S. (1991) Metachromasy in clay mineral systems. Spectrophotometric and calorimetric study of the adsorption of crystal-violet and ethyl violet by Namontmorillonite and by Na-kaolinite. Journal of Thermal Analysis and Calorimetry, 37,1347–1356.Google Scholar
Endo, T.,Sato, T. & Shimada, M. (1986) Fluorescence properties of the dye-intercalated smectite. Journal of Physics and Chemistry of Solids, 47,799–804.CrossRefGoogle Scholar
Endo, T.,Nakada, N.,Sato, T. & Shimada, M. (1988) Fluorescence of clay-intercalated xanthene dyes. Journal of Physics and Chemistry of Solids, 49, 1423–1428.Google Scholar
Ghosh, A.K. & Mukerjee, P. (1970) Multiple association equilibria in the self-association of methylene blue and other dyes. Journal of the American Chemical Society, 92,6408–6412.Google Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfa¨higkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitschrift für anorganische und allgemeine Chemie, 262,95–99.Google Scholar
Klika, Z. (1979) Studium polymerace methylenové modře ve vodných roztocích. Sborník veˇdeckých prací VŠB-TU Ostrava, 2,53–70.Google Scholar
Klika, Z.,Weissmannová, H.,Čapková, P. & Pospíšil, M. (2004) The rhodamine B intercalation of montmorillonite. Journal of Colloid Interface Science, 275, 243–250.Google Scholar
Klika, Z.,Čapková, P.,Horáková, P.,Valášková, M.,Malý, P.,Machá, R. & Pospíšil, M. (2007) Composition, structure,a nd luminescence of montmorillonites saturated with different aggregates of methylene blue. Journal of Colloid Interface Science, 311, 14–23.Google Scholar
Klika, Z.,Pustková, P.,Praus, P.,Kovář, P.,Pospíšil, M., Malý, P.,Grygar, T.,Kulhánková, L. & Čapková, P. (2009) Fluorescence of reduced charge montmorillonite complexes with methylene blue: Experiments and molecular modeling. Journal of Colloid Interface Science, 339,416–423.CrossRefGoogle ScholarPubMed
Komadel, P.,Ma dejová, J. & Bujdák, J. (2005) Preparation and properties of reduced-charge smectites. Clays and Clay Minerals, 53,313–334.Google Scholar
Lueck, H.B.,Bo bbie, L. & McHale, J.L. (1992) Aggregation of triphenylmethane dyes in aqueous solution: dimerization and trimerization of crystal violet and ethyl violet. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 48, 819–828.Google Scholar
Madejová, J. (2005) Studies of reduced-charge smectites by near infrared spectroscopy. Pp. 169–202 in: The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides, CMS Workshop Lectures (J.T. Kloprogge,editor). The Clay Mineral Society,USA.Google Scholar
Martynková, G.S.,Kulhánková, L.,Malý, P. & Čapková, P. (2008) Fluorescence and structure of methyl redclay nanocomposites. Journal of Nanoscience and Nanotechnology, 8,2069–2074.Google Scholar
Salleres, S.,Arbeloa, F.L., Martínez, V.M.,Arbeloa, T. & Arbeloa, I.L. (2009) Improving the fluorescence polarization method to evaluate the orientation of fluorescent systems adsorbed in ordered layered materials. Journal of Luminescence, 129, 1336–1340.Google Scholar
Sasai, R.,Iyi, N.,Fujita, T.,Arbeloa, F.L.,Martínez, V.M., Takagi, K. & Itoh, H. (2004) Luminescence properties of rhodamine 6G intercalated in surfactant/clay hybrid thin solid films. Langmuir, 20,4715–4719.Google Scholar
Selwyn, J.E. & Steinfeld, J.I. (1972) Aggregation equilibria of xanthene dyes. The Journal of Physical Chemistry, 76,762–774.CrossRefGoogle Scholar
Stork, W.H.J.,Lippits, G.J.M. & Mandel, M. (1972) Association of crystal violet in aqueous solutions. The Journal of Physical Chemistry, 76,1772–1775.Google Scholar
Stužka, V. & Hanuš, V. (1980) Spectrophotometric study of polymerization of Nile Blue A. Acta Universitatis Palackianae Olomucensis, 65,139–153.Google Scholar
Su, Ch.-Ch. & Shen, Y.-H. (2005) Preparation and dispersive behaviors of reduced charge smectite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 259,173–177.CrossRefGoogle Scholar
Villemure, G.,Detel lier, C. & Szabo, A.G. (1986) Fluorescence of clay-intercalated methylviologen. Journal of the American Chemical Society, 108, 4658–4659.Google Scholar
Yariv, S. & Nasser, A. (1990) Metachromasy in clay minerals. Spectroscopic study of the adsorption of crystal violet by laponite. Journal of the Chemical Society, Faraday Transactions, 86,1593–1598. CrossRefGoogle Scholar