Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-05T22:38:48.921Z Has data issue: false hasContentIssue false

A hydrogeological model for palygorskite formation in the Danian continental facies of the Provence Basin (France)

Published online by Cambridge University Press:  09 July 2018

J. Colson
Affiliation:
Ecole des Mines de Paris, CGES Sédimentologie
I. Cojan
Affiliation:
Ecole des Mines de Paris, CGES Sédimentologie
M. Thiry
Affiliation:
CIG 35, rue St.-Honoré, 77 305 Fontainebleau, France

Abstract

The Danian of the Provence basin (SE France) is characterized by a strong subatmospheric alteration processes throughout the basin. A wide range of facies, depositional and weathering, were recognized in an interval of 5 Myr and include floodplain fine-grained alluvium, palustrine limestones, playa dolostones, mottled palaeosols, vadose and phreatic calcretes, and phreatic dolocretes. Palygorskite was invariably found in laminar, massive and honeycomb vadose calcretes and phreatic dolocretes, as well as in playa dolostones, and only exceptionally in floodplain siltstones, nodular calcretes and palustrine limestones. Regardless of the facies, palygorskite is associated with smectites. An authigenic origin, based on the morphology of the fibres and the vertical distribution of clay minerals, is proposed for palygorskites in all of the facies. The simultaneous occurrence of palygorskite in these environments is interpreted as a sign of a stable seasonal semi-arid climate and low detrital input during a period of low lake level (-0.5 Myr). The occurrence of authigenic palygorskite in siltstones around the lake was attributed to the rising of the water table, retention of the already saturated water in the pore spaces of the sediment, and its subsequent evaporation in a confined environment. A hydrogeological model is proposed for the distribution of palygorskite. The elongated shape of the Provence basin enhanced the influence of lateral inflow of freshwater during the low lake period which explains the distribution of palygorskite in different environments of the Provence basin as well as spatial distribution of phreatic calcretes and dolocretes. During the high lake level, palygorskite formed in the few remaining ephemeral ponds and on the floodplain along the lake margin.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakel, A.V. (1986) Evolution of calcrete in palaeodrainages of the lake Napper Area, central Australia. Palaeogeogr. Palaeoclimat. Palaeoecol. 54, 283-303.Google Scholar
Arnaud, M. & Monleau, C. (1979) Etude de l'évolution d'une plateforme carbonatée: exemple de la Provence au Jurassique. PhD thesis, Univ. Provence, France.Google Scholar
Bachmann, G.D. & Machette, M.N. (1977) Calcic soils and calcretes in the south western United States. U.S. Geol. Survey, Open File Report 77-794, 163 pp.Google Scholar
Bowler, J.M. (1986) Spatial variability and hydrologic evolution of Australian lake basins: Analogue for Pleistocene hydrologic change and formation. Palaeogeogr. Palaeoclimat. PalaeoecoL 54, 21–41.Google Scholar
Cande, S. & Kent, D. (1992) A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophy. Res. 97, 13 917-13 951.Google Scholar
Cande, S. & Kent, D. (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophy. Res. 100, 60936095.CrossRefGoogle Scholar
Carlisle, D. (1983) Concentration of uranium and vanadium in calcretes and gypcretes. Pp. 185-195 in: Residual Deposits (Wilson, R.C.L., editor), GeoL Soc. London Spec. Publ. 11, Blackwell Scientific Publ., Oxford.Google Scholar
Chahi, A., Duplay, J. & Lucas, J. (1993) Analyses of palygorskites and associated clays from the Jbel Rhassoul (Morocco): Chemical characteristics and origin of formation. Clays Clay Miner. 41, 401 –411.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer Verlag, Berlin.Google Scholar
Chamley, H. & Bonnot-Courtois, C. (1981) Argiles authigbnes et terrigènes de l'Atlantique et du Pacifique NW (Legs 11 et 58 DSDP): apport des terres rares. Oceanol. Acta, 4, 229–238.Google Scholar
Cojan, I. (1989) Structure diapirique contrô1ant la sédimentation. Séries continentales de Provence (Rians - K/T). 2nd French Sedimentological Cong. Paris, 79-80.Google Scholar
Cojan, I. (1993) Alternating fluvial and lacustrine sedimentation: tectonic and climatic controls (Provence Basin, S. France, Upper Cretaceous/ Palaeocene). Pp. 425-438 in: Alluvial Sedimentation (Marzo, M. & Puigdefabregas, C., editors) Int. Assoc. Sediment. Spec. Publ. 17.Google Scholar
Cojan, I., Iatzoura, A. & Renard, M. (1992) Geochemical approach of paleoenvironments and climate in continental formation (Upper Cretaceous, Provence - France). Int. Global Correl. Pro. 324, Ann. Meeting, Madrid, 21-23.Google Scholar
Colson, J. & Cojan, I. (1996) Groundwater dolocretes in a lake marginal environment: an alternative model for the dolocrete formation in the continental setting (Danian of the Provence basin, France). Sedimentology, 43, 175-188.Google Scholar
Cornet, C. (1974) Sur l'existence d'un niveau repère à attapulgite au sein du remplissage des fossés Nord Varois (Provence). C. R. Acad. Sci. Paris, 278, 809811.Google Scholar
Cornet, C. (1977) Etude préliminaire des minéraux argileux des s6éries continentales du Crétacé supérieur et du Tertiaire des fossés Nord Varois (Provence). Géol. Méditerranéenne, 4, 379–382.Google Scholar
Couture, R.A. (1977) Composition and origin of palygorskite-rich and montmorillonite-rich zeolite containing sediments from Pacific Ocean. Chem. Geol. 19, 113130.CrossRefGoogle Scholar
Curtis, C.D. (1990) Aspects of climatic influence on the clay mineralogy and geochemistry of soils, paleosols and clastic sedimentary rocks. J. Geol. Soc. London, 147, 351357.CrossRefGoogle Scholar
Debrabant, P. & Foulon, J. (1979) Expression géochimique des variations du paléoenvironnement depuis le Jurasslque supérieur sur les marges nord-atlantiques. Oceanol. Acta, 2, 469475.Google Scholar
Deconinck, J.-F. & Accarie, H. (1990) Palygorskite and eustatism during Mid-Cretaceous in the Maiella Mountain (Abruzzi, Central Italy). Proc. 9th Int. Clay Con[. Strasbourg, 88, 1520.Google Scholar
Djurdjevic-Colson, J. (1996) Découpage séquentiel de dépots fluviolacustres à paléosols carbonatés. Interprétation climatique et hydrologique (Danien, bassin d'Aix-en-Provence, France). Mém. Sci. de la Terre ENSMP Paris, 26, 175 pp.Google Scholar
Durand, J.P. (1989) Le synclinal de l'Arc et la limite Crétacé-Paléocène. Cah. Réser, Géol. Haute Provence, 1, 2–10.Google Scholar
Durand, J.P., Acquaviva, M. & Giroud d'Argoud, G. (1974) Sur les minéraux argileux du Paléocéne du synclinal de l'Arc (région d'Aix-enProvence). C.R. Acad. Sci. Paris, 79, 18491852.Google Scholar
Elgabaly, M.M. (1962) The presence of attapulgite in some soils of the western desert of Egypt. Soil Sci. 93, 387390.CrossRefGoogle Scholar
Eswaran, H. & Barzanji, A.F. (1974) Evidence for neoformation of attapulgite in some arid soils of Iraq. Trans. lOth Int. Cong. Soil Sci. Moscow, 7. 154-161.Google Scholar
Freytet, P. & Plaziat, J.-C. (1982) Continental Carbonate Sedimentation and Pedogenesis – Late Cretaceous and Early Tertiary of Southern France. Contributions to Sedim. 12, Springer Verlag, Stuttgart, 213 pp.Google Scholar
Galán, E. & Castillo, A. (1984) Sepiolite-palygorskite in Spanish Tertiary basins: Genetical patterns in continental environments. Pp. 87–124 in: Palygorskite and Sepiolite. Occurrences, Genesis and Uses. (A. Singer & Galán, E., editors), Developments in Sedimentology 37, Elsevier, Amsterdam.Google Scholar
Galbrun, B., Rasplus, L. & Durand, J.-P. (1991) La limite Crétacé Tertiaire dans le domaine provençal: étude magnétostratigraphique du passage Rognacien-Vitrollien à l'Ouest du synclinal de l'Arc. C. R. Acad. Sci. Paris, 312, 14671473.Google Scholar
Gile, L.H., Peterson, F.F. & Grossman, R.B. (1966) Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Sci. 101, 347–360.CrossRefGoogle Scholar
Grousset, F., Latouche, C. & Parra, M. (1982) Late Quaternary sedimentation between the Gibbs fracture and the Greenland basin: mineralogical and geochemical data. Marine Geol. 47, 303–330.Google Scholar
Halitim, A., Robert, M. & Pedro, G. (1983) Etude expérimentale de l'épigénie calcaire des silicates en milieu confiné. Caractérisation des conditions de son développement et des modalités de sa mise en jeu. Sci. Géol. Mém. Strasbourg, 71, 6373.Google Scholar
Hansen, H.J., Gwozdz, R. & Rasmussen, K.L. (1989) The continental Cretaceous-Tertiary boundary in the Aixen- Provence region, South France. A preliminary paleomagnetic study. Cah. Réser. Géol. Haute Provence, 1, 43–50.Google Scholar
Inglès, M. & Anadon, P. (1991) Relationship of clay minerals to depositional environment in the nonmarine Eocene Pontils Group, SE Ebro Basin (Spain). J. Sed. Pet. 61, 926936.Google Scholar
Jacobson, G., Arakel, A.V. & Yijian Ch. (1988) The central Australian groundwater discharge zone: Evolution of associated calcrete and gypcrete deposits. Austral. J. Earth Sci. 35, 549565.Google Scholar
Jones, B.F. & Galán, E. (1988) Sepiolite and palygorskite. Pp. 631-674 in: Hydrous Phyllosilicates (Bailey, S.W., editor), Reviews in Mineralogy, 19, Miner. Soc. Amer.Google Scholar
Longman, M.W. & Mench, P.A. (1978) Diagenesis of Cretaceous limestones in the Edwards aquifer system of south-central Texas: a scanning electron microscopy study. Sedim. Geol. 21, 241276.Google Scholar
Machette, M.N. (1985) Calcic soils of South Western United States. Pp. 1-21 in: Soils and Quaternary Geology of the South Western United States (Weide, D.L., editor), Geol. Soc. Amer. Spec. Paper, 203.Google Scholar
McGrath, D.A. (1984) Morphological and mineralogical characteristics of indurated caliches of the Llano Estacado. MS thesis, Texas Technical Univ., USA.Google Scholar
Millot, G. (1964) G∼ologie des Argiles. Masson et Compagnie, Paris, 499 pp.Google Scholar
Millot, G., Nahon, D., Paquet, H., Ruellan, A. & Tardy, Y. (1977) L'épigénie calcaire des roches silicatées dans les encroutements carbonatés en pays subaride, Anti-Atlas, Maroc. Sci. Gdol. Bull. Strasbourg, 30, 129152.Google Scholar
Mosser, C. (1983) Elements traces des argiles: des marqueurs. Clay Miner. 18, 139–151.CrossRefGoogle Scholar
Netterberg, F. (1980) Geology of Southern African calcretes: 1. Terminology, description, macrofeatures and classification. Trans. Geol. Soc. S. Africa, 83, 255283.Google Scholar
Paquet, H. (1970) Evolution géochimique des minéraux argileux dans les alterations et les sols des climats méditerranéens et tropicaux à saisons contrastées. Mém. Serv. Carte Géol. Alsace Lorraine, 30, 212 pp.Google Scholar
Paquet, H. (1983) Stability, instability and significance of attapulgite in the calcretes of mediterranean and tropical areas with marked dry season. Sci. Gdol. Mém. Strasbourg, 72, 131140.Google Scholar
Rodas, M., Luque, F.J., Mas, R. & Garzon, M.G. (1994) Calcretes, palycretes and silcretes in the Paleogene detrital sediments of the Duero and Tajo basins, central Spain. Clay Miner. 29, 273-285.Google Scholar
Ruellan, A. (1971) Contribution à la connaissance des sols de régions méditerranéennes: les sols à profils calcaires différencié des plaines de la Basse Moulouya (Maroc oriental). Mem. ORSTOM, France, 54, 302 pp.Google Scholar
Singer, A. (1984a) The paleoclimatic interpretation of clay minerals in sediments – a review. Earth Sci. Reviews, 21, 251293.CrossRefGoogle Scholar
Singer, A. (1984b) Pedogenic palygorskite in the arid environment. Pp. 169–176 in: Palygorskite and Sepiolite: Occurrences, Genesis and Uses (Singer, A. & Galán, E., editors), Developments in Sedimentology 37, Elsevier, Amsterdam.Google Scholar
Singer, A. & Norrish, K. (1974) Pedogenic palygorskite occurrences in Australia. Am. Miner. 59, 508–517.Google Scholar
Sittler, C. (1965) Le Paléogène des fossés Rhénan et Rhodanien. Etudes sédimentologiques et paléoclimatiques. Mém. Serv. Carte Géol. Alsace Lorraine, 24, 392 pp.Google Scholar
Sittler, C. & Millot, G. (1964) Les climats du Paléogène français reconstitués par les argiles néoformées et les microflores. Geol. Rundschau, 54, 333–343.Google Scholar
Thiry, M., Forette, N. & Schmitt, J.M. (1983) Technique de diffraction des rayons X et interprétation des diagrammes. Note technique ENSMP, Paris, 51 pp.Google Scholar
Trauth, N. (1977) Argiles évaporitiques dans la sedimentation carbonatée continentale et épicontinentale tertiaire. Bassins de Paris, de Mormoiron et de Salinelles (France), Jbel Ghassoul (Maroc). Sci. Géol. Mdm. Strasbourg, 49, 203 pp.Google Scholar
Velde, B. (1985) Clay Minerals. A Physico-chemical Explanation of their Occurrence. Developments in Sedimentology, 40, Elsevier, Amsterdam.Google Scholar
Verrecchia, E.P. & Le Coustumer, M.-N. (1996) Occurrence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex. Sde Boqer, Negev Desert, Israel. Clay Miner. 31, 183202.CrossRefGoogle Scholar
Wang, Y., Nahon, D. & Merino, E. (1994) Dynamic model of the genesis of calcretes replacing silicate rocks in semi-arid regions. Geochim. Cosmochim. Acta, 58, 51315145.Google Scholar
Watts, N.L. (1980) Quaternary pedogenic calcretes from the Kalahari (Southern Africa): mineralogy, genesis and diagenesis. Sedimentology, 27, 661686.Google Scholar
Weaver, C.E. & Beck, K.C. (1977) Miocene of the SE United States: a model for chemical sedimentation in a perimarine environment. Sedim. Geol. 17, 1–234.Google Scholar
Westphal, M. & Durand, J.P. (1990) Magnéto-stratigraphie des séries continentales fiuviolacustres du Crétacé supérieur dans le synclinal de l'Arc (région d'Aix-en-Provence, France). Bull. Soc. Géol. France, 8, 609621.Google Scholar
Wright, V.P. (1992) Palaeosol recognition: A guide to early diagenesis in terrestrial setting. Pp. 591–619 in: Diagenesis III (Wolf, K.H. & Chilingarian, G.V., editors), Developments in Sedimentology, 47, Elsevier, Amsterdam.Google Scholar
Wright, V.P. & Tucker, M.E. (1991) Calcretes – an introduction. Pp. 1 -22 in: Calcretes (Wright, V.P. & Tucher, M.E., editors), Int. Assoc. Sediment. Reprint Set. 2, Blackwell Scientific Publ., Oxford.Google Scholar
Yaalon, D. & Wieder, M. (1976) Pedogenic palygorskite in some arid brown (calciorthid) soils of Israel. Clay Miner. 11, 7380.Google Scholar