Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T19:46:14.590Z Has data issue: false hasContentIssue false

The in Vitro cytotoxicity of some standard clay mineral dusts in the respirable size range

Published online by Cambridge University Press:  09 July 2018

I. P. Gormley
Affiliation:
Institute of Occupational Medicine, 8 Roxburgh Place, Edinburgh EH8 9SU, UK
J. Addison
Affiliation:
Institute of Occupational Medicine, 8 Roxburgh Place, Edinburgh EH8 9SU, UK

Abstract

Seven natural clay minerals (two kaolinites, three montmorillonites, a hectorite and a palygorskite) were tested for their cytotoxicity in vitro using an established cytotoxicity assay. Cellular viability, levels of lactate dehydrogenase, N-acetyl-β-d-glucosaminidase, lactic acid and total cellular protein were measured in cells of the macrophage-like cell line, P388D1, after 48 h incubation with each clay. There was a significant relationship between BET/N2 surface area of the clays and cytotoxicity but in two cases the level of cytotoxicity was apparently influenced by the presence of quartz or cristobalite in the samples. Results are discussed in the light of the available animal and epidemiological data relating to clay minerals.

Resume

Resume

La cytotoxicité in vitro de sept argiles naturelles (deux kaolinites, trois montmorillonites, une hectorite et une palygorskite) a été examinée au moyen d'un test de cytotoxicité précis. La viabilité cellulaire, les taux en lactate de déshydrogénase, en N-acétyl-β-d-glucosaminidase, en acide lactique et en protéine cellulaire totale ont été mesurés dans des cellules de souche cellulaire du type macrophage, P388D1, après 48 heures d'incubation avec chaque argile. Il existe une relation significative entre la surface de l'argile, déterminée selon la méthode BET, et la cytotoxicité. Mais dans deux cas, le taux de cytotoxicité est apparemment influencé par la présence de quartz ou de cristobalite dans l'échantillon. Les résultats sont discutés à la lumière des données disponsibles en matière de physiologie animale et d'epidémiologie, en relation avec les argiles.

Kurzreferat

Kurzreferat

Die Cytotoxizität sieben natürlicher Tonminerale (2 Kaolinite, 3 Montmorillonit, 1 Hektorit und 1 Palygorskit) wurde unter Verwendung eines vorhandenen Tests in vitro überprüft. Die Lebensfähigkeit der Zellen, sowie Laktat Dehydrogenase, N-Acetyl-β-d-Glucosaminidase, Milchsäure und gesamtes Zellprotein wurden in Zellen des Makrophagen ähnlichen Stammes P388D1 nach einer 48-stündigen Inkubation mit jedem Tonmineral gemessen. Zwischen der BET-Oberfläche (N2) der Tone und der Cytotoxizität wurde eine signifikante Beziehung gefunden, aber in zwei Fällen wurde das Niveau der Cytotoxizität anscheinend auch durch die Gegenwart von Quarz oder cristobalit in den Proben beeinflußt. Die Ergebnisse werden im Hinblick auf die bereits bekannten Daten diskutiert.

Resumen

Resumen

Se ha comprobado la citotoxicidad in vitro, de siete arcillas naturales (dos caolinitas, tres montmorillonitas, una hectorita y una palygorskita), usando un ensayo tipo de citotoxicidad. Se han medido la viabilidad celular, niveles de lactato de hidrogenosa, N-acetil-β-d-glucosaminidasa, ácido láctico y proteina celular total, en células del tipo macrofágico, P388D1, después de 48 hrs. de incubación con cada arcilla. Existe una relación significativa entre la superficie específica BET/N2 de las arcillas y su citotoxicidad aunque en dos casos el nivel de citotoxicidad fué influenciado aparentemente por la presencia de cuarzo o cristobalita en la muestra. Se discuten los resultados a la vista de los datos disponibles en animales, relacionados con las arcillas, sobre epidemiología.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamis, Z. & Timar, M. (1978) Studies on the effects of quartz, bentonite and coal dust mixtures on macrophage. in vitro. Brit. J. exp. Path. 59, 411415.Google Scholar
Adamis, Z. & Timar, M. (1980) Investigations of the effects of quartz, aluminium silicates and colliery dusts on peritoneal macrophages in vitro. Pp. 1318 in: The in Vitro Effects of Mineral Dusts (Brown, R. C., Gormley, I. P., Chamberlain, M. and Davies, R., editors). Academic Press, London.Google Scholar
Allison, A.C. (1968) Lysosomes and the response to cells to toxic materials. Scientific Basis of Medicine Annual Reviews 18-30.Google Scholar
Bignon, J., Sebastien, P., Gaudichet, A. & Jaurand, M.C. (1980) Biological effects of attapulgite. Pp. 163181 in: Biological Effects of Mineral Fibres 1 (Wagner, J. C., editor). IARC Publication 30, Lyon.Google Scholar
Brambilla, C., Abraham, J., Brambilla, E., Benirschke, K. & Bloor, C. (1979) Comparative pathology of silicate pneumoconiosis. Am. J. Path. 96, 149163.Google Scholar
Campbell, A.H. & Gloyne, S.R. (1942) A case of pneumoconiosis due to the inhalation of fuller's earth. J. Path. Bact. 54, 7580.Google Scholar
Chaykin, S.(1966) Biochemistry Laboratory Techniques, p. 17. Wiley, New York.Google Scholar
Daniel, H. & Le Bouffant, L. (1980) Study of quantitative scale for assessing the cytotoxicity of mineral dusts. Pp. 3339 in: The In Vitro Effects of Mineral Dusts (Brown, R. C, Gormley, I. P., Chamberlain, M. and Davies, R., editors). Academic Press, London.Google Scholar
Dawe, C.J. & Potter, M. (1957) Morphologic and biologic progression of a lymphoid neoplasm of the mouse. in vivo and in vitro. Am. J. Pathol. 33, 603.Google Scholar
Edenfield, R.W. (1960) A clinical and roentgenological study of kaolin workers. Arch, environ. Hlth. 1, 392403.Google Scholar
Gormley, I.P., Collings, P., Davis, J.M.G. & Ottery, J. (1979) An investigation into the cytotoxicity of respirable dusts from British collieries. Brit. J. exp. Path. 60, 526535.Google Scholar
Gormley, I.P., Wright, M.O. & Ottery, J. (1978) The effect of toxic particles on the electrophysiology of macrophage membranes. Ann. occup. Hyg. 21, 141149.Google Scholar
Gutmann, I. & Wahlefeld, A.W. (1974) Pp. 14641468 in: Methods of Enzyme Analysis 2nd Edn. (Bergmeyer, H. U., editor). Academic Press, New York.Google Scholar
Hale, L.W., Gough, J., King, E.J. & Nagelschmidt, G. (1956) Pneumoconiosis of kaolin workers. Brit. J. industr. Med. 13, 251259.Google Scholar
Ham, R.G. (1963) An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp. Cell Res. 29, 515526.Google Scholar
Hammond, E.C., Selikoff, I.J. & Seidman, H. (1979) Asbestos exposure, cigarette smoking and death rates. Ann.N.Y.Acad. Sci. 330, 473490.Google Scholar
King, E.J., Harrison, C.V. & Nagelschmidt, G. (1948) Effect of kaolin on the lungs of rats. J. Path. Bad. 60, 435440.Google Scholar
Le Bouffant, L., Daniel, H. & Martin, J.C. (1980) The value and limits of the relationship between cytotoxicity and flbrogenicity of various mineral dusts. Pp. 332338 in: The In Vitro Effects of Mineral Dusts (Brown, R. C., Gormley, I. P., Chamberlain, M. and Davies, R., editors). Academic Press, London.Google Scholar
Low, R.B., Leffingwell, C.M. & Bulman, C.A. (1980) Effects of kaolinite on amino acid transport and incorporation into protein by rabbit pulmonary alveolar macrophages. Arch. Environ, Hlth. 35, 217223.Google Scholar
Lynch, K.M. & McIver, F.A. (1954) Pneumoconiosis from exposure to kaolin dust: kaolinosis. Am. J. Pathol. 30, 11171122.Google ScholarPubMed
Marks, J. (1957) The neutralisation of silica toxicit. in vitro. Brit. J. ind. Med. 14, 8184.Google Scholar
Marks, J. & Nagelschmidt, G. (1959) A study of the toxicity of dust with the use of the in vitro dehydrogenase technique. Arch. Ind. Hlth. 20, 383389.Google Scholar
Phibbs, B.P., Sundin, R.E. & Mitchell, R.S. (1971) Silicosis in Wyoming bentonite workers. Am. Rev. Resp. Dis. 103, 117.Google ScholarPubMed
Policard, A. & Collet, A. (1954) Etude experimental des effets pathologique du kaolin. Schweiz. Z. allg. Path. Bakt. 17, 320325.Google Scholar
Pott, F., Dolgner, R., Friedrichs, K.H. & Huth, F. (1976) L'effet oncogene des poussieres flbreuses. Ann. Anat. Pathol. 21, 237246.Google Scholar
Robertson, A., Dodgson, J., Gormley, I.P. & Collings, P. (1982) An investigation of the adsorption of oxides of nitrogen on respirable dusts and the effects on their cytotoxicity. Pp. 607622 in: Inhaled Particles V. (Walton, W. H., editor). Pergamon Press, Oxford. (Ann. occup. Hyg. 26, 607622.)Google Scholar
Robock, K. (1973) Standard Quartz DQ12 <5 μm for experimental pneumoconiosis research projects in the Federal Republic of Germany. Ann. occup. Hyg. 16, 6366.Google Scholar
Ruttner, J.R., Bovet, P., Weber, R. & Willy, W. (1952) Neue Ergebnisse tierexperimenteller Silikoseforschung. Naturwissenschaften 39, 332.Google Scholar
Sakula, A. (1961) Pneumoconiosis due to fuller's earth. Thorax 16, 176179.CrossRefGoogle ScholarPubMed
Sheers, G. (1964) Prevalence of pneumoconiosis in Cornish kaolin workers. Brit. J. industr. med. 21, 218225.Google Scholar
Timár, M., Kendrey, G. & Juhasz, A. (1966) Experimental observations concerning the effects of mineral dust to pulmonary tissue. Med. Lavoro 57, 19.Google ScholarPubMed
Tonning, H.O. (1949) Pneumoconiosis from fuller's earth. J. Ind. Hyg. Toxicol. 31, 4145.Google Scholar
Van Olphen, H. & Fripiat, J.J. (1979) Data Handbook for Clay Minerals and Other Non-metallic Minerals. Pergamon Press, Oxford.Google Scholar
Vigliani, E.C., Pernis, B. & Monaco, L. (1961) A study of the action of quartz on macrophages in vitro. Pp. 348-353 in: Inhaled Particles and Vapours (Davies, C. N., editor). Pergamon Press, Oxford.Google Scholar
Wade, M.J., Lipkin, L.E., Tucker, R.W. & Frank, A.L. (1976) Asbestos cytotoxicity in a long term macrophage-like culture. Nature 264, 444446.Google Scholar
Warraki, S. & Herant, Y. (1963) Pneumoconiosis in china-clay workers. Brit. J. industr. Med. 20, 226230.Google Scholar
Woolen, J.W., Heyworth, R. & Walker, P.G. (1961) Studies on glucosaminidase 3. Testicular N-acetyl-β-glucosaminidase and N-acetyl-β-galactosaminidase. Biochem. J. 78, 111116.CrossRefGoogle Scholar
Wright, A., Gormley, I.P., Collings, P.L. & Davis, J.M.G. The cytotoxicities of asbestos and other fibrous dusts. Pp. 25-31 in: The In Vitro Effects of Mineral Dusts (Brown, R. C., Gormley, I. P., Chamberlain, M. and Davies, R., editors). Academic Press, London.Google Scholar
Wróblewski, F. & Ladue, J.S. (1955) Lactic dehydrogenase activity in blood. Proc. Soc. exp. Biol. Med. 90, 210213.Google Scholar