Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T10:23:41.510Z Has data issue: false hasContentIssue false

Late Cretaceous—Palaeocene mid-latitude climates: inferences from clay mineralogy of continental-coastal sequences (Tremp-Graus area, southern Pyrenees, N Spain)

Published online by Cambridge University Press:  09 July 2018

J. Arostegi*
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, 48080, Spain
J. I. Baceta
Affiliation:
Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, 48080, Spain
V. Pujalte
Affiliation:
Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, 48080, Spain
M. Carracedo
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, 48080, Spain

Abstract

The origin and distribution of late Maastrichtian–early Palaeocene clay mineral associations were investigated in the Tremp-Graus basin (South Pyrenees, Spain) to assess palaeoclimate changes during that period. The studied succession is made up of expanded continental and transitional terrigeneous and carbonate deposits accumulated in a coastal plain setting. X-ray diffraction, SEM-EDX and TEM-AEM analysis reveal that the main clay components are illite and smectite, but kaolinite, chlorite and illite-smectite mixed layers are present, although irregularly distributed, all of them showing a platy morphology typical of a detrital origin. Persistence of the chemical features of the Al-dioctahedral smectites throughout the whole succession demonstrates the persistence of the same source area during the interval studied. Palygorskite occurs in the late Danian and Selandian, within carbonate tidal flats as sabkha-like facies. In SEM images, the palygorskite displays straight fibre morphologies, both coating and branched curling out, a clear proof of authigenic origin.

Physical or chemical weathering (PhW/ChW) determined as illite + chlorite/smectite + kaolinite ratio, smectite/kaolinite ratio and palygorskite distribution have been used as clay proxies for palaeoclimate reconstructions. Such data suggest a shift from temperate subhumid (perennial) conditions in late Maastrichtian times to a warm seasonal climate during early Palaeocene times. This trend, however, was dramatically altered during the late Danian–Selandian interval, when prevailing warm and semi-arid to arid climatic conditions caused intense evaporation and the development of an alkaline environment in which the palygorskite authigenesis took place.

The proposed climatic trend partly concurs with that established for earliest Danian time by Domingo et al. (2007), also in the Tremp-Graus basin, from isotopic and geochemical proxies, as well as with the reconstruction of Cojan & Moreau (2006), in which a semiarid Danian phase for the near continental basin of Aix-en-Provence is postulated. However, it is at odds with the notion of a humid Danian state in the Pyrenees, as inferred by Gawenda et al. (1999) from clay mineral proxies of deep marine successions.

Type
Research Papers
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, L.W., Alvarez, W., Asaro, F. & Michel, H.V. (1980) Extraterrestrial cause for the Cretaceous Tertiary extinction. Science, 208, 10951108.Google Scholar
Ardevol, L., Klimowitz, J., Malagón, J. & Nagtegaal, P.J.C. (2000) Depositional sequence response to foreland deformation in the Upper Cretaceous of the Southern Pyrenees, Spain. American Association of Petroleum Geologists Bulletin, 84, 566587.Google Scholar
Baceta, J.I. (1996) El Maastrichtiense superior, Paleoceno e Ilerdiense inferior de la Región Vasco-Cantábrica: Secuencias Deposicionales, Facies y Evolucion Paleogeográfica. PhD thesis, University of País Vasco, Spain, 372 pp.Google Scholar
Baceta, J.I., Wright, V.P. & Pujalte, V. (2001) Paleomixing zone karst features from Paleozone carbonates of north Spain: initial recognizing a potentially widespread but rarely documented diagenetic system. Sedimentary Geology, 139, 205216.Google Scholar
Baceta, J.I., Pujalte, V., Serra-Kiel, J., Robador, A. & Orue-Etxebarria, X. (2004) La Cordillera Pirenaica: Maastrichtiense superior, Paleoceno e Ilerdiense inferior. Pp. 308313 in: Geología de España. Volumen Special Sociedad Geológica de España-Instituto Geológico y Minero de España, Madrid (Vera, J.A.., editor).Google Scholar
Baceta, J.I., Bernaola, G. & Arostegi, J. (2006) Lithostratigraphy of the Mid_Paleocene intervalo at Zumaia section.. Pp. 3842 in: The Paleocene and lower Eocene of the Zumaia section (Basque Basin). Climate and Biota of the Early Paleogene 2006. Post Conference Field Trip Guidebook. Bilbao. (Bernaola, G., Baceta, J.I., Payros, A., Orue-Etxebarria, X. & Apellaniz, E., editors).Google Scholar
Baceta, J.I., Wright, V.P., Beavington-Penney, S.J. & Pujalte, V. (2007) Palaeohydrological control of palaeokarst macro-porosity genesis during a major sealevel lowstand: Danian of the Urbasa-Andia plateau, Navarra, North Spain. Sedimentary Geology, 199, 141169.Google Scholar
Barnolas, A. & Pujalte, V. (2004) La Cordillera Pirenaica. Pp. 233343 in: Geología de España. Volumen Special Sociedad Geológica de España-Instituto Geologico y Minero de España, Madrid (Vera, J.A., editor).Google Scholar
Birsoy, R. (2002) Formation of sepiolite palygorskite and related minerals from solution. Clays and Clay Minerals, 50, 736745.CrossRefGoogle Scholar
Bolle, M.P. & Adatte, T. (2001) Palaeocene-Early Eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Minerals, 36, 249261.CrossRefGoogle Scholar
Carreras, J. & Santanach, P. (1983) El Hercinico de los Pirineos. Pp. 536550 in: Geología de España. Libro Jubilar J.M. Rios (Comba, J.A, editor). Comisión Nacional de Geología e Instituto Geológico y Minero de España, Madrid.Google Scholar
Carstea, D.D., Harward, M.E. & Kjiox, E.G. (1970) Comparison of iron and aluminum hydroxy interlayers in montmorillonite and vermiculite: I. Formation. Proceedings of the Soil Science Society of America, 34, 517521.CrossRefGoogle Scholar
Chamley, H. (1989) Clay Sedimentology. Springer Verlag, Berlin.Google Scholar
Cojan, I. & Moreau, M.G. (2006) Correlation of terrestrial climatic fluctuations with global signals during the upper Cretaceous/Danian in a compressive setting (Provence, France). Journal of Sedimentary Research, 76, 589604.Google Scholar
Colson, J., Cojan, I. & Thiry, M. (1998) A hydrogeological model for palygorskite formation in the Danian continental facies of the Provence Basin (France). Clay Minerals, 33, 333347.Google Scholar
Cuevas, J. L. (1992) Estratigrafia del Garumniense de la Conca de Tremp. Prepirineo de Lérida. Ada Geológica Hispánica, 27, 95102.Google Scholar
Do Campo, M., del Papa, C., Nieto, F., Hongn, F. & Petrinovic, I. (2010) Integrated analysis for constraining palaeoclimatic and volcanic influences on clay-mineral assemblages in orogenic basins (Palaeogene Andean foreland, Northwestern Argentina). Sedimentary Geology, 228, 98112.Google Scholar
Domingo, L., López-Martínez, N., Soler-Gijon, R., & Grimes, S. (2007) A multi-proxy geochemical investigation of the early Paleocene (Danian) continental palaeoclimate at the Fontllonga-3 site (South Central Pyrenees, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 256, 7185.Google Scholar
Dong, H. & Peacor, D.R. (1996) TEM observations of coherent stacking relations in smectite, I/S and illite of shales: evidence for MacEwan crystallites and dominance of 2M1 polytypism. Clays and Clay Minerals, 44, 257275.Google Scholar
Eichenseer, H. (1988) Facies geology of Late Maastrichtian to Early Eocene coastal and shallow marine sediments (Tremp-Graus basin, northeastern Spain). PhD thesis, University of Tübingen, Germany.Google Scholar
Eichenseer, H. & Luterbacher, H. (1992) The marine Paleogene of the Tremp region (northeast Spain). Depositional sequences, facies history, biostratigraphy and controlling factors. Facies, 27, 119152.Google Scholar
Garcia-Romero, E., Suárez, M., Santarén, J. & Álvarez, A. (2007) Crystallochemical characterization of the palygorskite and sepiolite from the Allou Kangne deposit, Senegal. Clays and Clay Minerals, 55, 606617.Google Scholar
Gawenda, P., Winkler, W., Schmitz, B. & Adatte, T. (1999) Climate and bioproductivity control on carbonate turbidite sedimentation (Paleocene to earliest Eocene, Gulf of Biscay, Zumaia, Spain). Journal of Sedimentary Research, 69, 12531261.Google Scholar
Golovneva, L.B. (2000) The Maastrichtian (Late Cretaceous) climate in the Northern Hemisphere. Geológical Society, London, Special Publications, 181, 4354.Google Scholar
Hong, H.L., Li, Z.H., Xue, H.J., Zhu, Y.H., Zhang, K.X. & Xiang, S.Y. (2007) Oligocene clay mineralogy of the Linxia basin: evidence of paleoclimatic evolution subsequent to the initial-stage uplift of the Tibetan plateau. Clays and Clay Minerals, 55, 491503.Google Scholar
Jamoussi, F., Ben Aboud, A. & López-Galindo, A. (2003) Palygorskite genesis through silicate transformation in Tunisian continental Eocene deposits. Clay Minerals, 38, 187199.Google Scholar
Jenny, H. (1980) The Soil Resource, Origin and Behaviour. Springer-Verlag, New York Google Scholar
Jones, B.F. & Galan, E. (1988) Sepiolite and palygorskite. Pp. 631674 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, USA.Google Scholar
Jones, B.F. & Spencer, R.J. (1985) Clay minerals of the Great Salt Lake Basin. Abs. 114 in: International Clay Conference 1985. Denver, Colorado, USA.Google Scholar
Kubler, B. (1997) Concomitant alteration of clay minerals and organic matter during burial diagenesis. Pp. 327362 in: Soil and Sediments: Mineralogy and Geochemistry. (Paquet, H. & Clauer, N., editors). Springer-Verlag, Berlin.Google Scholar
Lamolda, M.A. (1990) The Cretaceous-Tertiary boundary crisis at Zumaya (Northern Spain). Pp. 393399 in: Extinction Events in Earth History (Kauffman, E.G. & Walliser, O.H., editors) Springer-Verlag. Berlin.Google Scholar
Li, L. & Keller, G. (1998) Abrupt deep-sea warming at the end of the Cretaceous. Geology, 26, 995998.Google Scholar
López-Martínez, N. & Peláez-Campomanes, P. (1999). New mammals from south-central Pyrenees (Tremp Formation, Spain) and their bearing on Late Paleocene marine-continental correlations. Bulletin de la Société Géologique de France, 170, 681686.Google Scholar
López-Martínez, N., Ardévol, L., Arribas, M.E., Civis, J. & Gonzalez-Delgado, A. (1996) Transition Cretacico/ Terciario en depositos continentales de la cuenca de Tremp-Graus: datos preliminares de isotopos estables de C y O. Geogaceta, 20, 6265.Google Scholar
López-Martínez, N., Ardévol, L., Arribas, M.E., Civis, J., Gonzalez-Delgado, A. (1998) The geological record in non-marine environments around the K/T boundary (Tremp Formation, Spain). Bulletin de la Societe Geologique de France, 169, 1120.Google Scholar
Lopez Martinez, N. & Arribas, M.E., Robador, A., Vicens, E. & Ardévol, L. (2006). Los carbonates danienses (Unidad 3) de la formatión Tremp (Pirineos surcentrales): paleogeografia y relatión con el limite Cretácico-Terciario. Revista de la Sociedad Geológica de España, 19, 213255.Google Scholar
Medus, J. & Colombo, F. (1991) Succession climatique et limite stratigraphique Crétacé-Tertiaire dans le N.E. de l'Espagne. Ada Geológica Hispanica, 26, 2735.Google Scholar
Meunier, A. (2007) Soil hydroxy-interlayered minerals : a re-interpretation of their crystallochemical properties. Clays and Clay Minerals, 55, 380388.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals (2nd edition). Oxford University Press, New York.Google Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D.R. & Arostegi, J. (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian basin. Clays and Clay Minerals, 44, 304323.Google Scholar
Ortega-Huertas, M., Martínez-Ruiz, F., Palomo, I. & Gonzalez, I. (1998) Geológical factors controlling clay mineral patterns across the Cretaceous-Tertiary boundary in Mediterranean and Atlantic sections. Clay Minerals, 33, 483500.Google Scholar
Pletsch, T., Daoudi, L., Chamley, H., Deconinck, J.F. & Charroud, M. (1996) Paleogeographic controls on palygorskite occurrence in mid-Cretaceous sediments of Morocco and adjacent basins. Clay Minerals, 31, 403416.Google Scholar
Pluchery, E. (1995). Cycles de depot du continent a I'ocean: Les series d'age Maastrichtien supérieur à Eocène moyen de la marge basco-cantabrique et de son arrière-pays iberique (Espagne du nord). PhD thesis, Univsité de Dijon, Dijon, France.Google Scholar
Puigdefábregas, C., Nijman, W. & Muñoz, J.A. (1991). Alluvial deposits of the successive foreland basin stages and their relation to the Pyrenean thrust sequences. Pp. 8062 in: 4th International Conference on Fluvial Sedimentology. Guide books Series, 10. Barcelona, Spain.Google Scholar
Robador, A. (2005). El Paleoceno e Ilerdiense inferior del Pirineo Occidental: Estratigrafia y sedimentologia. PhD Thesis, Universidad del Pais Vasco, Bilbao, Spain.Google Scholar
Rosell, J., Linares, R. & Llompart, C. (2001) El “Garumniense” prepirenaico. Revista Espahola de Paleontologia, 14, 4756.Google Scholar
Schmitz, B. & Pujalte, V. (2003) Sea-level, humidity, and land-erosion records across the initial Eocene thermal maximum from a continental-marine transect in northern Spain. Geology, 31, 689692.Google Scholar
Schulte, P. Alegret, L., Arenillas, I., Arz, J.A. Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, G.L., Claeys, P., Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto K., Grajales-Nishimura, J.M., Grieve, R.A.F., Gulick, S.P.S., Johnson, K.R., Kessling, W., Koeberl, C., Kring, D.A., MacLeod, K.G., Matsui, T., Melosh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W.U., Robin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M.T. & Willumsen, P.S. (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous- Paleogene Boundary. Science, 327, 12141218.Google Scholar
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments. Earth Science Reviews, 21, 251293.Google Scholar
Singer, A. (1989) Illite in the hot aridic soil environment. Soil Science, 147, 126133.CrossRefGoogle Scholar
Singer, A. & Norrish, K. (1974) Pedogenic palygorskite occurrences in Australia. American Mineralogist, 59, 508517.Google Scholar
Sztràkos, K., Gély, J.-P., Blondeau, A. & Müller, C. (1997) Le Paleocene du Bassin sud-aquitain: lithostratigraphie, biostratigraphie et analyse séquentielle. Géologie de la France, 4, 2754.Google Scholar
Tambareau, Y., Crochet, B., Villate, J. & Deramond, J. (1995) Evolution tectono-sédimentaire du versant nord des Pyrénées centre-orientales au Paléocene et a L'Eocène inferieur. Bulletin Société Géologique de France, 166, 375387.Google Scholar
Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Science Review, 49, 201221.Google Scholar
Van der Hurk, A.M. (1990) Eustatic and tectonic controls on carbonate and siliciclastic Paleogene depositional systems in the South Pyrenean foreland basin (Esera, Cinca and Cinqueta valleys; prov. Huesca, Spain). PhD thesis, Universidad Autonoma de Barcelona, Bellaterra.Google Scholar
Velde, B. (1995) Origin and Mineralogy of Clays. Springer-Verlag, New York, USA.Google Scholar
Verges, J. (1993) Estudi geolgic del vessant Sud del Pirineu Oriental i Central: Evolucio en 3D. PhD thesis, University of Barcelona, SpainGoogle Scholar
Vergés, J., Millán, H., Roca, E., Muñoz, J. A., Marzo, M., Cirés, J., den Bezemer, T., Zoetemeijer, R. & Cloetingh, S. (1995) Eastern Pyrenees and related foreland basins: Presyn- and post-collisional crustalscale cross-sections. Pp. 903916 in. Marine and Petroleum Geology, 12 (Cloetingh, S., Durand, B. & Puigdefabregas, C., editors).Google Scholar
Vincent, S.J. (2001) The Sis palaeovalley: a record of proximal fluvial sedimentation and drainage basin development in response to Pyrenean mountain building. Sedimentology, 48, 12351276.Google Scholar
Weaver, C.E. (1989) Clays, Muds, and Shales. Developments in Sedimentology, 44. Elsevier, Amsterdam.Google Scholar
Wilson, M.J. (1987) Soil smectites and related interstratified minerals: recent developments. Proceedings of the International Clay Conference, Denver, 167-173.Google Scholar
Winkler, W. & Gawenda, P. (1999) Distinguishing climatic and tectonic forcing of turbidite sedimentation, and the bearing on turbidite bed scaling: Paleocene-Eocene of northern Spain. Journal Geológical Society of London, 156, 791800.Google Scholar
Zaaboub, N. Abdeljaouad, S. & Lopez-Galindo, A. (2005) Origin of fibrous clays in Tunisian Paleogene continental deposits. Journal of African Earth Sciences, 43, 491504.Google Scholar
Ziegler, P.A. (1988) Evolution of the Arctic-North Atlantic and the western Tethys: Tulsa, Oklahoma. American Association of Petroleum Geologists Memoir, 43, 1198.Google Scholar